Ontology of Evidence

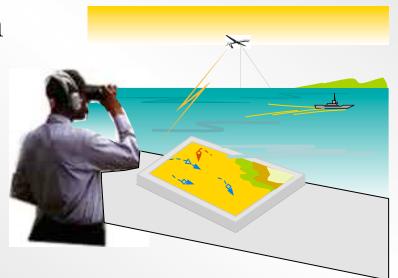
Kathryn Blackmond Laskey
David Schum
Paulo C. G. Costa
George Mason University

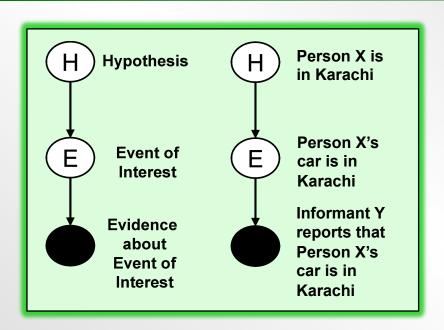
Terry Janssen
Lockheed Martin IS&GS

OIC 2008 December 3, 2008

In the olden days...

- We built stovepipes
 - Stand-alone systems
 - Used by a single organization for a single purpose
 - Specialized formats for inputs and outputs
 - Idiosyncratic database schema
 - Key assumptions documented on paper or not at all
 - Labor-intensive manual transformation of outputs for use by another stovepipe


A Whole New World...



What Information to Exchange?

- Intelligence analysts draw conclusions from *evidence*
- Evidential reasoning must account for uncertainties:
 - Noise in sensors
 - Incorrect, incomplete, deceptive human intelligence
 - Lack of understanding of cause and effect mechanisms in the world
- We must exchange more than reports & conclusions:
 - Sources
 - Context
 - Pedigree
 - Credibility

Some Key Attributes of Evidence

Relevance

- How does the evidence bear on H?
 - Direct
 - Circumstantial
 - Indirect (ancillary)

Credibility

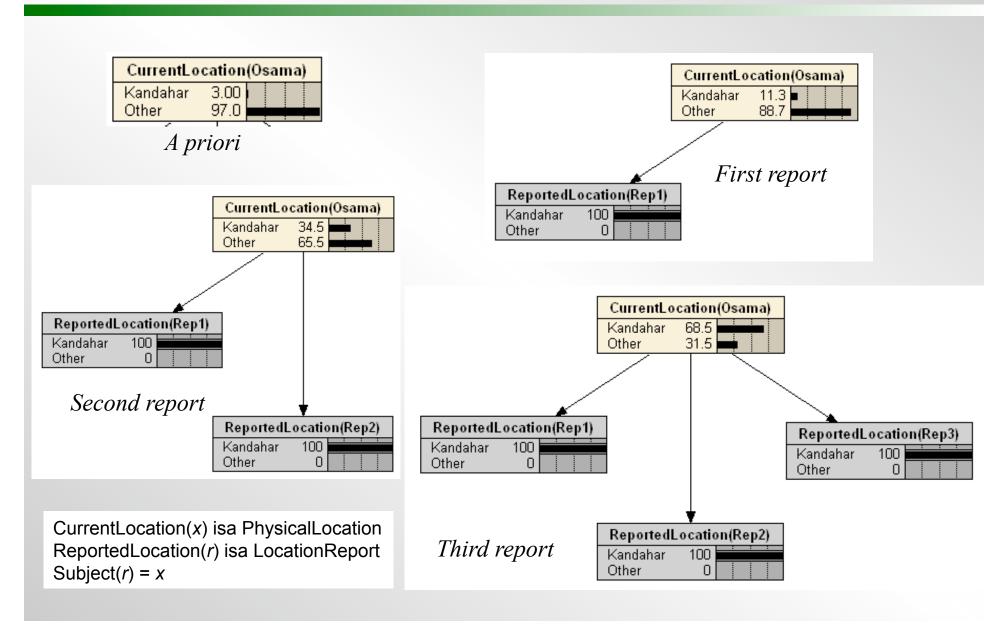
- How trustworthy or believable is the evidence?
 - Tangible
 - Testimonial
 - Authoritative records

Weight

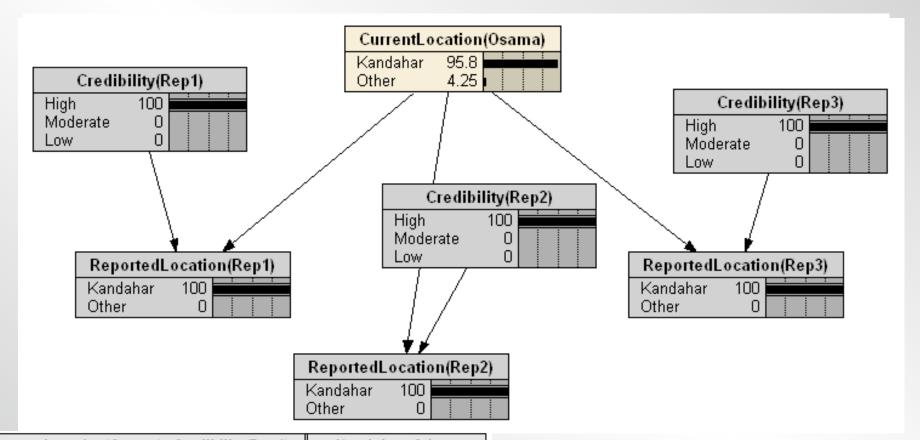
 How strong is the relationship between the evidence and H?

Some Entity Types

- Sources and their characteristics
 - Sensors
 - Human agents
 - Forensic artifacts
- Environmental and contextual factors
- Hypothesis sets
 - Binary
 - Categorical
 - Ordinal
 - Numeric (discrete, continuous)
- Reports

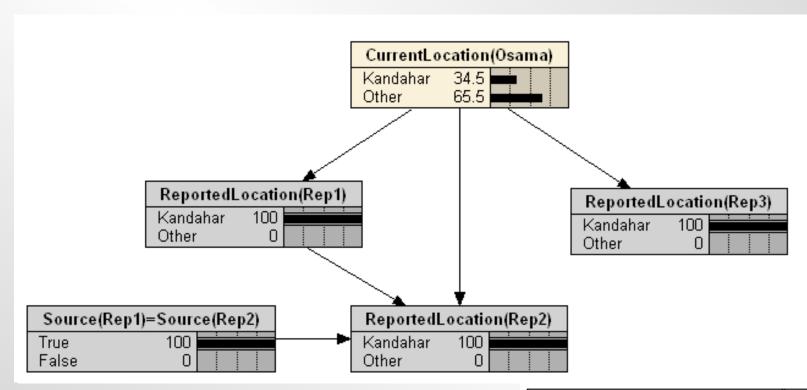

Some Attributes of Credibility

- Tangible evidence (e.g., image)
 - Authenticity of report
 - Sensitivity of sensor
 - Specificity of sensor
 - Reliability of sensor
- Testimonial evidence (e.g., informant report)
 - Veracity of source
 - Objectivity of source
 - Competence of source with regard to reported event


Probability and Ontology

- Probability is a well-established representation for evidential weight
 - Represent statistical regularities in domain
 - Combine statistical information with expert knowledge
 - Draw powerful inferences under uncertainty
- Probabilistic semantics supports interoperability
 - More than just numbers!
 - Much of the value of probabilistic representation is structural

Example: Independent Reports



Credibility and Evidential Force

CurrentLocation(Osama)	Credibility(Rep1)	Kandahar	Other
Kandahar	High	90.000	10.000
Kandahar	Moderate	80.500	19.500
Kandahar	Low	70.000	30.000
Other	High	10.000	90.000
Other	Moderate	19.500	80.500
Other	Low	30.000	70.000

Example: Common Source

Source(CurrentL	Reporte	Kandahar	Other
True	Kandahar	Kandahar	95.000	5.000
True	Kandahar	Other	5.000	95.000
True	Other	Kandahar	95.000	5.000
True	Other	Other	5.000	95.000
False	Kandahar	Kandahar	80.500	19.500
False	Kandahar	Other	80.500	19.500
False	Other	Kandahar	19.500	80.500
False	Other	Other	19.500	80.500

Support / Built-in Elements

Reified Relationships

PR-OWL:

A Language for Expressing Probabilistic Ontologies

PR-OWL classes

- Extends W3C recommended OWL ontology language
- Based on expressive probabilistic logic
- Represents probabilistic knowledge in XML-compliant format.
- Open-source, freely available solution for representing knowledge and associated uncertainty in a principled manner.
- Reasoner under development at University of Brasilia
 - Beta version released
 July, 2008 on SourceForge

Argument relationship Node

Resident

Skolem

MTheory

Probability assignment
Built-In RV

Boolean RV states

Categorical RV states

Object

Meta-Entity

Domain Resident

Probability distribution

PR-OWL table

Main Classes / Elements

SubClasses

(Costa, 2005)

Summary

- Evidential reasoning is fundamental to intelligence analysis
- Realizing net-centric vision requires sharing credibility and pedigree as well as reports and conclusions
- Capturing semantics of evidence is necessary
- Probabilistic ontology can represent both structural and numerical aspects of evidential reasoning

