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Tangram (2006–2008) 

IARPA program goals: 

  Prototype a surveillance and alerting system to counter the 
terrorist threat. 

  Automate analytical workflows with “plug-and-play” algorithmic 
components. 

  Automatically select the “best” component in a given component 
class, based on: 

–  Data profiling 
–  Component execution profiling 
–  Machine learning-based performance prediction 

  Execute workflows on a massive scale using grid computing. 



Our Contributions 

  Uniformly accessible semantic store conforming to an enterprise-
wide ontology 

  Logic programming-based, forward-chaining query language for 
components to access data from the store 

  Software toolkit to streamline introduction of additional 
legacy software components as semantically interoperable 
workflow building blocks  

  Branching context representation to organize workflow 
components’ analytical hypotheses  



Toolkit 

  Allows a knowledgeable user to “wrap” a newly installed 
component for workflow operation, quickly  

  Provides a compact, declarative specification  
  Covers certain widely used input / output formats: 

–  Comma-separated value (CSV) files 
–  Any delimited text 

  Built to work with AllegroGraph, from Franz, Inc. 
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GITI’s ToolKit supports three native component interface styles. 
–  Automatic: Delimited text files (implemented), XML files (notionally 

designed) 
–  Semi-automatic: Ntriples files 
–  Custom Lisp code 

Wrapping a Legacy Workflow Component 



watchlistGraph evidenceGraph Group Detection Watchlist-Evidence 
Dataset Join Component 

linkGraph 

Group Detection Component 

outputGraph 

Workflow Use Case 



(defKB-query-component  
     group-detection-watchlist-evidence-dataset-join-component  
     (DataJoinProcess) 
  ((query (q- ?Event !rdf:type !teo:TwoWayCommunicationEvent ?evidenceGraph) 
          (q- ?Event !teo:sender ?sender ?evidenceGraph) 
          (q- ?Event !teo:receiver ?receiver ?evidenceGraph) 
          (q- ?sender !rdf:type !teo:Person ?evidenceGraph) 
          (q- ?receiver !rdf:type !teo:Person ?evidenceGraph) 
          (q- ?sender !rdf:type !teo:Person ?watchlistGraph) 
          (q- ?receiver !rdf:type !teo:Person ?watchlistGraph) 
          (a- ?Event !rdf:type !teo:TwoWayCommunicationEvent ?linkGraph) 
          (a- ?Event !teo:deliberateActor ?sender ?linkGraph) 
          (a- ?Event !teo:deliberateActor ?receiver ?linkGraph) 
          (a-- ?sender !rdf:type !teo:Person ?linkGraph) 
          (a-- ?receiver !rdf:type !teo:Person ?linkGraph))))  

KB Query Component & Query Forms 



GDA Native Input and Output CSV Files 

Native GDA Input: 

Ev-1194,In-10381 
Ev-709,In-15840 
Ev-709,In-36232 
Ev-38749,In-4938 
Ev-38749,In-48834 
Ev-34121,In-3007 
Ev-34121,In-35214 
Ev-65474,In-21371 
Ev-65474,In-19354 
Ev-23484,In-39017 
Ev-23484,In-16809 
… 

Native GDA Output: 

group,entity 
G0,In-10096 
G0,In-15840 
G0,In-19354 
G0,In-19540 
G0,In-19625 
G0,In-21371 
G0,In-28719 
G0,In-37201 
G0,In-37733 
G0,In-38634 
G0,In-47910 
G1,In-1002 
… 



(defWrapped-component GDA-component-TerroristGroup (GroupDetectionProcess) 
  :native-input-CSV-file-specs 
    (("links.csv" 
      :query (query (q- ?E !teo:deliberateActor ?P ?linkGraph)) 
      :query-type select 
      :headerline nil 
      :text-delimiter "," 
      :query-template (?E ?P))) 
  :native-output-CSV-file-specs 
    (("groups.csv" 
      :query (query (a- ?G !teo:orgMember ?P ?outputGraph) 
                    (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph) 
                    (a-- ?P !rdf:type !teo:Terrorist ?outputGraph)) 
      :headerline t 
      :CSV-template (?G ?P) 
      :namespace-template ("http://anchor/teo#" "http://anchor/teo#"))) 
  :native-component-directory "GDA_DISTRIBUTION" 
  :native-component-command-name "gda_applic" 
  :native-component-command-arguments ("links" "links.csv"))  

Automatic Interface 



Automatic Input Mechanism 

Native GDA Input File: 

Ev-1194,In-10381 
Ev-709,In-15840 
Ev-709,In-36232 
Ev-38749,In-4938 
Ev-38749,In-48834 
Ev-34121,In-3007 
Ev-34121,In-35214 
Ev-65474,In-21371 
Ev-65474,In-19354 
Ev-23484,In-39017 
Ev-23484,In-16809 
… 

(q- ?E           !teo:deliberateActor ?P            ?linkGraph) 

(q- !teo:Ev-1194 !teo:deliberateActor !teo:In-10381 ?linkGraph) 

General Query Conjunct: 

Instantiated Query Conjunct: 

(?E             ?P) General Query Template: 

(!teo:Ev-1194 !teo:In-10381) Instantiated Query Template: 
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Calling the Native Component 
(Automatic Interface) 

                           Directory:   Command-name:  Command-arguments:  

$GU_CORE/GDA_DISTRIBUTION gda_applic  links links.csv 

Native 
Component 



Automatic Output Mechanism 

Native GDA Output File: 

group,entity 
G0,In-10096 
G0,In-15840 
G0,In-19354 
G0,In-19540 
G0,In-19625 
G0,In-21371 
G0,In-28719 
G0,In-37201 
G0,In-37733 
G0,In-38634 
G0,In-47910 
G1,In-1002 
… 

(a- ?G      !teo:orgMember ?P            ?outputGraph) 

(a- !teo:G0 !teo:orgMember !teo:In-10096 ?outputGraph) 

(a-- ?G      !rdf:type !teo:TerroristGroup ?outputGraph) 

(a-- !teo:G0 !rdf:type !teo:TerroristGroup ?outputGraph) 

(a-- ?P !rdf:type !teo:Terrorist ?outputGraph) 

(a-- !teo:In-10096 !rdf:type !teo:Terrorist ?outputGraph) 

(?G       ?P) General CSV / Query Template: 

(!teo:G0 !teo:In-10381) Instantiated Query Template: 

(G0       In-10381) Instantiated CSV Template: 

Query Conjuncts: 

Gen. 

Inst. 

Gen. 

Inst. 

Gen. 

Inst. 

Transform: 

TEO 
 

Native 
Format 

Assert to 
KB 

native 
format file 

native 
format file 



(defWrapped-component GDA-component-TerroristGroup (GroupDetectionProcess) 
  :declared-input-queries 
    ((query (q- ?E !teo:deliberateActor ?P ?linkGraph))) 
  :declared-output-queries 
    ((query (a- ?G !teo:orgMember ?P ?outputGraph) 
            (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph) 
            (a-- ?P !rdf:type !teo:Terrorist ?outputGraph))) 
  :native-component-directory "GDA" 
  :native-component-command-name "ntriples-GDA-wrapper.sh" 
  :native-component-command-arguments ())  

Semi-automatic Interface 



Semi-automatic Input Mechanism 

<http://anchor/teo#Ev-1194> <http://anchor/teo#deliberateActor> 
<http://anchor/teo#In-10381> . 

<http://anchor/teo#Ev-52532> <http://anchor/teo#deliberateActor> 
<http://anchor/teo#In-37997> . 

... 

(q- ?E                 !teo:deliberateActor  
?P ?linkGraph) 

Query Conjunct: 

Input Ntriples File (./linkGraph): 

Query 
KB 



Calling the Native Component 
(Semi-automatic Interface) 

                           Directory:  Command-name:     

$GU_CORE/GDA  ntriples-GDA-wrapper.sh

Input Ntriples File (./linkGraph): 

Input CSV File (./links.csv): 

$GU_CORE/GDA_DISTRIBUTION gda_applic links links.csv 

Output Ntriples File (./outputGraph): 

Output CSV File (./groups.csv): 
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Semi-automatic Output Mechanism 

<http://anchor/teo#G0> <http://anchor/teo#orgMember>  
<http://anchor/teo#In-10096> . 

<http://anchor/teo#G0> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://anchor/teo#TerroristGroup> . 

<http://anchor/teo#In-10096> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 
<http://anchor/teo#Terrorist> . 

... 

(a- ?G !teo:orgMember  
?P ?outputGraph) 

(a-- ?G !rdf:type  
!teo:TerroristGroup ?outputGraph) 

(a-- ?P !rdf:type  
!teo:Terrorist ?outputGraph) 

Query Conjuncts: 

Output Ntriples File (./outputGraph): 

Assert to 
KB 



Custom Lisp Code Interface 

(defWrapped-component GDA-component-TerroristGroup (GroupDetectionProcess) 
  :declared-input-queries 
    ((query (q- ?E !teo:deliberateActor ?P ?linkGraph))) 
  :declared-output-queries 
    ((query (a- ?G !teo:orgMember ?P ?outputGraph) 
            (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph) 
            (a-- ?P !rdf:type !teo:Terrorist ?outputGraph))) 
  :inner-wrapper-body (GDA-component-multi-inner-wrapper-body 
                        linkGraph 
                        outputGraph 
                        !teo:Terrorist 
                        !teo:TerroristGroup 
                        GDA-component-TerroristGroup))  

Any Evaluable 
Lisp Expression 



Calling the Native Component 
(Custom Interface) 

Any Evaluable Lisp Expression 

Input Graph (?linkGraph): 

Input CSV File (./links.csv): 

$GU_CORE/GDA_DISTRIBUTION gda_applic links links.csv 

Output Graph (?outputGraph): 

Output CSV File (./groups.csv): 
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GDA Native Input XML File 



Automatic XML File Spec (Notional) 



Under the Covers, Behind the Scenes 

  Error handling and trapping 
  Trace mode for debugging 
  Automated regression testing 
  System-wide logging 
  Component characterization and registration 
  Stressing of AllegroGraph’s remote server implementation 



Tangram Data & Component Limitations 

  Structured, synthetic data 
  Limited space of components 

–  Group detectors (4) 
–  Suspicion scorers (2) 
–  Pattern matchers (2) 



The Wrapping Process 

Wrapping steps: 

  Install the wrapping toolkit. 
  Install the native component so that it 

will be accessible to the wrapper. 
  Define any KB query component(s) 

needed to select appropriate data 
from any broader dataset(s).   

  Define the wrapper for the native 
component.   

  Test both KB query and wrapped 
native components to ensure effective 
operation.  We have developed and 
applied a testing framework that 
includes component concurrency (i.e., 
re-entrance) testing.   

  Deploy the developed and tested 
components.  

Wrapping team: 

  “Installer” (of legacy components) 
  “Developer” (toolkit user) 
  “Tester” (wrapped component QA) 
  “Scripters” (custom wrapping code) 
  “Deployer” (of wrapped components 

  Component “champion” … 
–  Knows component’s enterprise function

(s) 
–  Understands component operation 
–  Brings exemplary use cases 

  Toolkit developers (receive new 
requirements) 



The Tangram GU Story 

  Developed the toolkit during roughly six months of concentrated 
effort 

–  Started with this presentation’s use case workflow  
–  Developed progressively more automatic interfaces  
–  Wrapped legacy components ourselves 
–  Provided the toolkit to others 
–  Wrapped components: GDA, ORA group detection algorithms, suspicion 

scorers based on Proximity and NetKit classifiers, LAW and CADRE pattern 
matchers 

  Met Tangram’s usability goals 
–  With the toolkit’s fully automatic interface, we can usually complete Steps 3 

and 4 of the foregoing wrapping process within a single staff hour.  



Representing a Dataset’s Context Lineage  

  We take each workflow component’s execution, noted in a ProcessExecution 
(PE) object, as the source of the statements in any output (hypothesis) dataset. 

  Lineage is manifested in the connections among datasets, process executions, 
and workflow executions (noted in WorkflowExecution objects). 

  Incremental context representation: Upstream datasets’ statements also hold in 
downstream datasets.   



Workflow Use Case (Reminder) 



Relaxing the Context Monotonicity Assumption 

  Current implicit assumption: 
–  A component’s output graph(s) only add(s), logically, to the 

information in its input graph(s), never delete(s) or retract(s).  
–  Not entirely practical in intelligence analysis…   

 Different analysts pursue different lines of reasoning, using different 
tools, at different times 

 Build on each other’s results / hypotheses 
 Sometimes appropriate to extend a context, sometimes to branch 



Some Reasons Different Contexts May Arise  

Differences in supporting data, from: 
  Conflicting original data sources. 
  Time-varying data conditions for a 

given source, such as: 
–  Disbelief in something we earlier 

had belief in (perhaps because it 
had been supplied in error) 

–  Belief in something we did not have 
belief in (perhaps because we had 
no data about it) 

Differences in supporting analytical 
hypotheses, from: 

  Analyst’s conjecture, or “what-if” 
analysis (that may effect belief or 
disbelief in data as discussed 
above) 

  Differences in workflow components 
giving rise to different answers, 
when: 

–  A given workflow function has 
alternative realizations in different 
components. 

–  A given component has alternative 
configurations of control 
parameters.  



Beyond Tangram 

Our workflow component semantic interoperability solution can 
stand on its own, apart from much of Tangram’s more ambitious 
surrounding machinery. 

  Automatically select the “best” component in a given component 
class, based on: 

–  Data profiling 
–  Component execution profiling 
–  Machine learning-based performance prediction 

  Execute workflows on a massive scale using grid computing. 

  Surrounding machinery’s constraints have sometimes limited our 
development opportunities. 



watchlistGraph evidenceGraph Group Detection Watchlist-Evidence 
Dataset Join Component 

Workflow Editor Opportunity 

linkGraph 

Group Detection Component 

outputGraph 

• Analyze queries to 
determine dataset-wise 
semantic compatibility of 
potentially connected 
components. 

GITI analyzes queries 
to support workflow 

reasoning now, but in 
Tangram we have not 

had a workflow 
composition role. 



(defKB-query-component  
     group-detection-watchlist-evidence-dataset-join-component  
     (DataJoinProcess) 
  ((query (q- ?Event !rdf:type !teo:TwoWayCommunicationEvent ?evidenceGraph) 
          (q- ?Event !teo:sender ?sender ?evidenceGraph) 
          (q- ?Event !teo:receiver ?receiver ?evidenceGraph) 
          (q- ?sender !rdf:type !teo:Person ?evidenceGraph) 
          (q- ?receiver !rdf:type !teo:Person ?evidenceGraph) 
          (q- ?sender !rdf:type !teo:Person ?watchlistGraph) 
          (q- ?receiver !rdf:type !teo:Person ?watchlistGraph) 
          (a- ?Event !rdf:type !teo:TwoWayCommunicationEvent ?linkGraph) 
          (a- ?Event !teo:deliberateActor ?sender ?linkGraph) 
          (a- ?Event !teo:deliberateActor ?receiver ?linkGraph) 
          (a-- ?sender !rdf:type !teo:Person ?linkGraph) 
          (a-- ?receiver !rdf:type !teo:Person ?linkGraph))))  

GUI to compose queries: 
•  Ontology class / subclass browsing interface 
•  Graphical depiction of query structure 
•  Constraints from declared adjacent components, dataset connections 

Query Editor Opportunity 



Component Editor Opportunity 

(defWrapped-component GDA-component-TerroristGroup (GroupDetectionProcess) 
  :declared-input-queries 
    ((query (q- ?E !teo:deliberateActor ?P ?linkGraph))) 
  :declared-output-queries 
    ((query (a- ?G !teo:orgMember ?P ?outputGraph) 
            (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph) 
            (a-- ?P !rdf:type !teo:Terrorist ?outputGraph))) 
  :native-component-directory "GDA" 
  :native-component-command-name "ntriples-GDA-wrapper.sh" 
  :native-component-command-arguments ())  

Forms-based GUI to 
define components, for 

those who definitely never 
want to touch anything 

that even looks like (Lisp) 
code. 



Ontology Alignment 
Facilitation Tool 

Ontology-based Component, e.g.: 
•  NetOwl 
•  Initiate 

Non-hub Artifact 

Non-hub  Hub Translator 

Hub Artifact 

Hub Artifact 

Non-hub  Hub Translator 

Non-hub Artifact Hub Ontology 

Non-hub Ontology 

Ontology Alignment Facilitation Opportunity 



Long the language of choice for 
rapidly prototyping reliable symbol-

based systems 

Provides reusable infrastructure 
for inference engine 

development 



Pairwise Adapters vs. “Hub” Language 

n (n – 1) = 30 unidirectional adapters 
for 6 components 

2n = 12 unidirectional adapters 
for 6 components 

GDA 

ORA 

NetKit Proximity 

CADRE LAW 

GDA 

ORA 

NetKit Proximity 

CADRE LAW 

Hub 
= TEO 


