
Global InfoTek, Inc.
SET Corp.

Solutions Made Simple, Inc.

Contributions to a Semantically Based
Intelligence Analysis Enterprise Workflow

System
Robert C. Schrag
Jon Pastor
Chris Long
Eric Peterson
Mark Cornwell,
Lance A. Forbes
Stephen Cannon

ONTOLOGY FOR THE INTELLIGENCE COMMUNITY (OIC)

21 October 2009

Tangram (2006–2008)

IARPA program goals:

  Prototype a surveillance and alerting system to counter the
terrorist threat.

  Automate analytical workflows with “plug-and-play” algorithmic
components.

  Automatically select the “best” component in a given component
class, based on:

–  Data profiling
–  Component execution profiling
–  Machine learning-based performance prediction

  Execute workflows on a massive scale using grid computing.

Our Contributions

  Uniformly accessible semantic store conforming to an enterprise-
wide ontology

  Logic programming-based, forward-chaining query language for
components to access data from the store

  Software toolkit to streamline introduction of additional
legacy software components as semantically interoperable
workflow building blocks

  Branching context representation to organize workflow
components’ analytical hypotheses

Toolkit

  Allows a knowledgeable user to “wrap” a newly installed
component for workflow operation, quickly

  Provides a compact, declarative specification
  Covers certain widely used input / output formats:

–  Comma-separated value (CSV) files
–  Any delimited text

  Built to work with AllegroGraph, from Franz, Inc.

Transform:

TEO


Native
Format

Transform:

TEO


Native
Format

native
format file

native
format file

Assert to
KB

native
format file

native
format file

Native
Component

Query
KB

GITI’s ToolKit supports three native component interface styles.
–  Automatic: Delimited text files (implemented), XML files (notionally

designed)
–  Semi-automatic: Ntriples files
–  Custom Lisp code

Wrapping a Legacy Workflow Component

watchlistGraph evidenceGraph Group Detection Watchlist-Evidence
Dataset Join Component

linkGraph

Group Detection Component

outputGraph

Workflow Use Case

(defKB-query-component
 group-detection-watchlist-evidence-dataset-join-component
 (DataJoinProcess)
 ((query (q- ?Event !rdf:type !teo:TwoWayCommunicationEvent ?evidenceGraph)
 (q- ?Event !teo:sender ?sender ?evidenceGraph)
 (q- ?Event !teo:receiver ?receiver ?evidenceGraph)
 (q- ?sender !rdf:type !teo:Person ?evidenceGraph)
 (q- ?receiver !rdf:type !teo:Person ?evidenceGraph)
 (q- ?sender !rdf:type !teo:Person ?watchlistGraph)
 (q- ?receiver !rdf:type !teo:Person ?watchlistGraph)
 (a- ?Event !rdf:type !teo:TwoWayCommunicationEvent ?linkGraph)
 (a- ?Event !teo:deliberateActor ?sender ?linkGraph)
 (a- ?Event !teo:deliberateActor ?receiver ?linkGraph)
 (a-- ?sender !rdf:type !teo:Person ?linkGraph)
 (a-- ?receiver !rdf:type !teo:Person ?linkGraph))))

KB Query Component & Query Forms

GDA Native Input and Output CSV Files

Native GDA Input:

Ev-1194,In-10381
Ev-709,In-15840
Ev-709,In-36232
Ev-38749,In-4938
Ev-38749,In-48834
Ev-34121,In-3007
Ev-34121,In-35214
Ev-65474,In-21371
Ev-65474,In-19354
Ev-23484,In-39017
Ev-23484,In-16809
…

Native GDA Output:

group,entity
G0,In-10096
G0,In-15840
G0,In-19354
G0,In-19540
G0,In-19625
G0,In-21371
G0,In-28719
G0,In-37201
G0,In-37733
G0,In-38634
G0,In-47910
G1,In-1002
…

(defWrapped-component GDA-component-TerroristGroup (GroupDetectionProcess)
 :native-input-CSV-file-specs
 (("links.csv"
 :query (query (q- ?E !teo:deliberateActor ?P ?linkGraph))
 :query-type select
 :headerline nil
 :text-delimiter ","
 :query-template (?E ?P)))
 :native-output-CSV-file-specs
 (("groups.csv"
 :query (query (a- ?G !teo:orgMember ?P ?outputGraph)
 (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph)
 (a-- ?P !rdf:type !teo:Terrorist ?outputGraph))
 :headerline t
 :CSV-template (?G ?P)
 :namespace-template ("http://anchor/teo#" "http://anchor/teo#")))
 :native-component-directory "GDA_DISTRIBUTION"
 :native-component-command-name "gda_applic"
 :native-component-command-arguments ("links" "links.csv"))

Automatic Interface

Automatic Input Mechanism

Native GDA Input File:

Ev-1194,In-10381
Ev-709,In-15840
Ev-709,In-36232
Ev-38749,In-4938
Ev-38749,In-48834
Ev-34121,In-3007
Ev-34121,In-35214
Ev-65474,In-21371
Ev-65474,In-19354
Ev-23484,In-39017
Ev-23484,In-16809
…

(q- ?E !teo:deliberateActor ?P ?linkGraph)

(q- !teo:Ev-1194 !teo:deliberateActor !teo:In-10381 ?linkGraph)

General Query Conjunct:

Instantiated Query Conjunct:

(?E ?P) General Query Template:

(!teo:Ev-1194 !teo:In-10381) Instantiated Query Template:

Transform:

TEO


Native
Format

native
format file

native
format file

Query
KB

Calling the Native Component
(Automatic Interface)

 Directory: Command-name: Command-arguments:

$GU_CORE/GDA_DISTRIBUTION gda_applic links links.csv

Native
Component

Automatic Output Mechanism

Native GDA Output File:

group,entity
G0,In-10096
G0,In-15840
G0,In-19354
G0,In-19540
G0,In-19625
G0,In-21371
G0,In-28719
G0,In-37201
G0,In-37733
G0,In-38634
G0,In-47910
G1,In-1002
…

(a- ?G !teo:orgMember ?P ?outputGraph)

(a- !teo:G0 !teo:orgMember !teo:In-10096 ?outputGraph)

(a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph)

(a-- !teo:G0 !rdf:type !teo:TerroristGroup ?outputGraph)

(a-- ?P !rdf:type !teo:Terrorist ?outputGraph)

(a-- !teo:In-10096 !rdf:type !teo:Terrorist ?outputGraph)

(?G ?P) General CSV / Query Template:

(!teo:G0 !teo:In-10381) Instantiated Query Template:

(G0 In-10381) Instantiated CSV Template:

Query Conjuncts:

Gen.

Inst.

Gen.

Inst.

Gen.

Inst.

Transform:

TEO


Native
Format

Assert to
KB

native
format file

native
format file

(defWrapped-component GDA-component-TerroristGroup (GroupDetectionProcess)
 :declared-input-queries
 ((query (q- ?E !teo:deliberateActor ?P ?linkGraph)))
 :declared-output-queries
 ((query (a- ?G !teo:orgMember ?P ?outputGraph)
 (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph)
 (a-- ?P !rdf:type !teo:Terrorist ?outputGraph)))
 :native-component-directory "GDA"
 :native-component-command-name "ntriples-GDA-wrapper.sh"
 :native-component-command-arguments ())

Semi-automatic Interface

Semi-automatic Input Mechanism

<http://anchor/teo#Ev-1194> <http://anchor/teo#deliberateActor>
<http://anchor/teo#In-10381> .

<http://anchor/teo#Ev-52532> <http://anchor/teo#deliberateActor>
<http://anchor/teo#In-37997> .

...

(q- ?E !teo:deliberateActor
?P ?linkGraph)

Query Conjunct:

Input Ntriples File (./linkGraph):

Query
KB

Calling the Native Component
(Semi-automatic Interface)

 Directory: Command-name:

$GU_CORE/GDA ntriples-GDA-wrapper.sh

Input Ntriples File (./linkGraph):

Input CSV File (./links.csv):

$GU_CORE/GDA_DISTRIBUTION gda_applic links links.csv

Output Ntriples File (./outputGraph):

Output CSV File (./groups.csv):

Transform:

TEO


Native
Format

Transform:

TEO


Native
Format

native
format file

native
format file

native
format file

native
format file

Native
Component

Semi-automatic Output Mechanism

<http://anchor/teo#G0> <http://anchor/teo#orgMember>
<http://anchor/teo#In-10096> .

<http://anchor/teo#G0> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://anchor/teo#TerroristGroup> .

<http://anchor/teo#In-10096> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://anchor/teo#Terrorist> .

...

(a- ?G !teo:orgMember
?P ?outputGraph)

(a-- ?G !rdf:type
!teo:TerroristGroup ?outputGraph)

(a-- ?P !rdf:type
!teo:Terrorist ?outputGraph)

Query Conjuncts:

Output Ntriples File (./outputGraph):

Assert to
KB

Custom Lisp Code Interface

(defWrapped-component GDA-component-TerroristGroup (GroupDetectionProcess)
 :declared-input-queries
 ((query (q- ?E !teo:deliberateActor ?P ?linkGraph)))
 :declared-output-queries
 ((query (a- ?G !teo:orgMember ?P ?outputGraph)
 (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph)
 (a-- ?P !rdf:type !teo:Terrorist ?outputGraph)))
 :inner-wrapper-body (GDA-component-multi-inner-wrapper-body
 linkGraph
 outputGraph
 !teo:Terrorist
 !teo:TerroristGroup
 GDA-component-TerroristGroup))

Any Evaluable
Lisp Expression

Calling the Native Component
(Custom Interface)

Any Evaluable Lisp Expression

Input Graph (?linkGraph):

Input CSV File (./links.csv):

$GU_CORE/GDA_DISTRIBUTION gda_applic links links.csv

Output Graph (?outputGraph):

Output CSV File (./groups.csv):

Transform:

TEO


Native
Format

Transform:

TEO


Native
Format

native
format file

native
format file

Assert to
KB

native
format file

native
format file

Native
Component

Query
KB

GDA Native Input XML File

Automatic XML File Spec (Notional)

Under the Covers, Behind the Scenes

  Error handling and trapping
  Trace mode for debugging
  Automated regression testing
  System-wide logging
  Component characterization and registration
  Stressing of AllegroGraph’s remote server implementation

Tangram Data & Component Limitations

  Structured, synthetic data
  Limited space of components

–  Group detectors (4)
–  Suspicion scorers (2)
–  Pattern matchers (2)

The Wrapping Process

Wrapping steps:

  Install the wrapping toolkit.
  Install the native component so that it

will be accessible to the wrapper.
  Define any KB query component(s)

needed to select appropriate data
from any broader dataset(s).

  Define the wrapper for the native
component.

  Test both KB query and wrapped
native components to ensure effective
operation. We have developed and
applied a testing framework that
includes component concurrency (i.e.,
re-entrance) testing.

  Deploy the developed and tested
components.

Wrapping team:

  “Installer” (of legacy components)
  “Developer” (toolkit user)
  “Tester” (wrapped component QA)
  “Scripters” (custom wrapping code)
  “Deployer” (of wrapped components

  Component “champion” …
–  Knows component’s enterprise function

(s)
–  Understands component operation
–  Brings exemplary use cases

  Toolkit developers (receive new
requirements)

The Tangram GU Story

  Developed the toolkit during roughly six months of concentrated
effort

–  Started with this presentation’s use case workflow
–  Developed progressively more automatic interfaces
–  Wrapped legacy components ourselves
–  Provided the toolkit to others
–  Wrapped components: GDA, ORA group detection algorithms, suspicion

scorers based on Proximity and NetKit classifiers, LAW and CADRE pattern
matchers

  Met Tangram’s usability goals
–  With the toolkit’s fully automatic interface, we can usually complete Steps 3

and 4 of the foregoing wrapping process within a single staff hour.

Representing a Dataset’s Context Lineage

  We take each workflow component’s execution, noted in a ProcessExecution
(PE) object, as the source of the statements in any output (hypothesis) dataset.

  Lineage is manifested in the connections among datasets, process executions,
and workflow executions (noted in WorkflowExecution objects).

  Incremental context representation: Upstream datasets’ statements also hold in
downstream datasets.

Workflow Use Case (Reminder)

Relaxing the Context Monotonicity Assumption

  Current implicit assumption:
–  A component’s output graph(s) only add(s), logically, to the

information in its input graph(s), never delete(s) or retract(s).
–  Not entirely practical in intelligence analysis…

 Different analysts pursue different lines of reasoning, using different
tools, at different times

 Build on each other’s results / hypotheses
 Sometimes appropriate to extend a context, sometimes to branch

Some Reasons Different Contexts May Arise

Differences in supporting data, from:
  Conflicting original data sources.
  Time-varying data conditions for a

given source, such as:
–  Disbelief in something we earlier

had belief in (perhaps because it
had been supplied in error)

–  Belief in something we did not have
belief in (perhaps because we had
no data about it)

Differences in supporting analytical
hypotheses, from:

  Analyst’s conjecture, or “what-if”
analysis (that may effect belief or
disbelief in data as discussed
above)

  Differences in workflow components
giving rise to different answers,
when:

–  A given workflow function has
alternative realizations in different
components.

–  A given component has alternative
configurations of control
parameters.

Beyond Tangram

Our workflow component semantic interoperability solution can
stand on its own, apart from much of Tangram’s more ambitious
surrounding machinery.

  Automatically select the “best” component in a given component
class, based on:

–  Data profiling
–  Component execution profiling
–  Machine learning-based performance prediction

  Execute workflows on a massive scale using grid computing.

 Surrounding machinery’s constraints have sometimes limited our
development opportunities.

watchlistGraph evidenceGraph Group Detection Watchlist-Evidence
Dataset Join Component

Workflow Editor Opportunity

linkGraph

Group Detection Component

outputGraph

• Analyze queries to
determine dataset-wise
semantic compatibility of
potentially connected
components.

GITI analyzes queries
to support workflow

reasoning now, but in
Tangram we have not

had a workflow
composition role.

(defKB-query-component
 group-detection-watchlist-evidence-dataset-join-component
 (DataJoinProcess)
 ((query (q- ?Event !rdf:type !teo:TwoWayCommunicationEvent ?evidenceGraph)
 (q- ?Event !teo:sender ?sender ?evidenceGraph)
 (q- ?Event !teo:receiver ?receiver ?evidenceGraph)
 (q- ?sender !rdf:type !teo:Person ?evidenceGraph)
 (q- ?receiver !rdf:type !teo:Person ?evidenceGraph)
 (q- ?sender !rdf:type !teo:Person ?watchlistGraph)
 (q- ?receiver !rdf:type !teo:Person ?watchlistGraph)
 (a- ?Event !rdf:type !teo:TwoWayCommunicationEvent ?linkGraph)
 (a- ?Event !teo:deliberateActor ?sender ?linkGraph)
 (a- ?Event !teo:deliberateActor ?receiver ?linkGraph)
 (a-- ?sender !rdf:type !teo:Person ?linkGraph)
 (a-- ?receiver !rdf:type !teo:Person ?linkGraph))))

GUI to compose queries:
•  Ontology class / subclass browsing interface
•  Graphical depiction of query structure
•  Constraints from declared adjacent components, dataset connections

Query Editor Opportunity

Component Editor Opportunity

(defWrapped-component GDA-component-TerroristGroup (GroupDetectionProcess)
 :declared-input-queries
 ((query (q- ?E !teo:deliberateActor ?P ?linkGraph)))
 :declared-output-queries
 ((query (a- ?G !teo:orgMember ?P ?outputGraph)
 (a-- ?G !rdf:type !teo:TerroristGroup ?outputGraph)
 (a-- ?P !rdf:type !teo:Terrorist ?outputGraph)))
 :native-component-directory "GDA"
 :native-component-command-name "ntriples-GDA-wrapper.sh"
 :native-component-command-arguments ())

Forms-based GUI to
define components, for

those who definitely never
want to touch anything

that even looks like (Lisp)
code.

Ontology Alignment
Facilitation Tool

Ontology-based Component, e.g.:
•  NetOwl
•  Initiate

Non-hub Artifact

Non-hub  Hub Translator

Hub Artifact

Hub Artifact

Non-hub  Hub Translator

Non-hub Artifact Hub Ontology

Non-hub Ontology

Ontology Alignment Facilitation Opportunity

Long the language of choice for
rapidly prototyping reliable symbol-

based systems

Provides reusable infrastructure
for inference engine

development

Pairwise Adapters vs. “Hub” Language

n (n – 1) = 30 unidirectional adapters
for 6 components

2n = 12 unidirectional adapters
for 6 components

GDA

ORA

NetKit Proximity

CADRE LAW

GDA

ORA

NetKit Proximity

CADRE LAW

Hub
= TEO

