Uncertain Reasoning for Creating Ontology Mapping on the Semantic Web

Miklos Nagy, Maria Vargas-Vera and Enrico Motta
Outline

- Introduction and context
- Motivation: Question Answering (QA)
- Belief for uncertain similarities
- Evaluation
- Conclusions
Introduction and context

Ontology mapping on the Semantic Web:

- Need for efficient and effective mapping
- Meaningful similarity combination
- Independent from domain specific parameters
Motivation: Question Answering (QA)
Belief for Uncertain Similarities

Assumptions:

• Similarity measures based on unreliable and inconsistent information

• Agents’ background knowledge depends on their perspective

• Knowledge over similarity measure is subjective and context dependent
Uncertainty with Dempster-Shafer

- Uncertain information in a numerical way
- Missing data also can be modeled
- Probabilities are assessed by combining pieces of evidences
- Evidences from two or more sources can be combined using Dempster’s rule of combination
Frame of discernment (\(\Theta\)): Represent the space of hypotheses

Evidence: available fact as a result of the observation

Belief mass function (\(m\)): finite amount of support for the particular evidence

Belief: sum of all evidence that supports a particular proposition

Dempster’s rule of combination:

\[
m_{ij}(A) = m_i \oplus m_j = \sum_{E_k \cap E_k} m_i(E_k) \ast m_j(E_k)
\]
Evaluation

- Experiments with the existing benchmarks of the 2006 and 2007 Ontology Alignment Evaluation Initiative
- Bibliographic references Ontology (different classifications of publications) contained 33 named classes, 24 object properties, 40 data properties
- Reference Ontology + systematically generated test ontologies starting from the reference ontology and discarding a number of information (data types, properties, instances, class hierarchies)
Sample ontologies from the benchmark

- Ontology Nr. 103: Language generalisation (OWL Lite)
- Ontology Nr. 204: Different naming conventions
- Ontology Nr. 205: Synonyms
- Ontology Nr. 221: No hierarchy
- Ontology Nr. 222: Flattened hierarchy
- Ontology Nr. 221: Expanded hierarchy
- Ontology Nr. 301: Real ontology – BibTex(MIT)
Uncertain Reasoning for Creating Ontology Mapping on the Semantic Web

DSSim: uses beliefs for managing uncertainty for similarity combination.

SimpleSim: combines different similarities producing an average measure.
Uncertain Reasoning for Creating Ontology Mapping on the Semantic Web

DSSim: uses beliefs for managing uncertainty for similarity combination.

SimpleSim: combines different similarities producing an average measure.
Comparison of different algorithms based on OAEI 2007 benchmarks(*)

<table>
<thead>
<tr>
<th>algo</th>
<th>DSSim</th>
<th>SEMA</th>
<th>falcon</th>
<th>OWL-CM</th>
<th>xsom</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1xx</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2xx</td>
<td>0.99</td>
<td>0.6</td>
<td>0.92</td>
<td>0.72</td>
<td>0.92</td>
</tr>
<tr>
<td>3xx</td>
<td>0.89</td>
<td>0.67</td>
<td>0.67</td>
<td>0.79</td>
<td>0.89</td>
</tr>
<tr>
<td>H-mean</td>
<td>0.99</td>
<td>0.64</td>
<td>0.9</td>
<td>0.74</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Position of the systems considering Precision/Recall(*)

DSSim Pros and cons

✓ Our method is not heavily dependent on subclass, sub property, disjointness or equivalency relationships among classes and properties

✓ Query terms are extended with their synonyms from WordNet so the uncertainty can be distributed sufficiently

✗ Dempser’s combination rule is computationally expensive therefore optimalisation is necessary

✗ WordNet terms are not domain specific
Conclusions

- Proposed a solution for the problem of inconsistency and incompleteness during ontology mapping
- Increased the mapping precision with utilizing uncertainty
- Proved that uncertainty handling with Dempster-Shafer theory is a promising alternative to traditional Bayesian solutions
Thank You!