

Enabling Wireless Access to Enterprise Data

Alexander M. Wyglinski, Ph.D.

Associate Professor, Electrical and Computer Engineering

Director, Wireless Innovation Laboratory

Investigator, Cyber Physical and Secure Systems (CPASS) Initiative

Motivation

- Good decisions are driven by information
 - Information integrity
 - Real-time
 - Shifting through various information sources
- Numerous applications require decision-making capabilities
- An increasing number of decisions are made automatically by robots, drones, etc...
 - Due to availability of capable embedded processor technology

Motivation

Motivation

Challenges and Issues

- Sharing of information <u>does not</u> scale well
 - Architectural considerations
 - Centralized versus distributed
 - Latency issues

5

- Impact on real-time operations
- Supported information
 - Bandwidth considerations
- Available resources and infrastructure

Example: Unoccupied wireless spectrum

Challenges and Issues

Challenges and Issues

- Increasing dependence on sensor data
 - Various forms of sensor information
 - Video, ultrasonic, LIDAR, sound, infrared, ...
 - Local decisions
 - Self-driving vehicles
 - Global decisions
 - Real-time situational awareness of an operation

Cyber Physical and Secure Systems

Embedded Systems

	Wireless Access
Hardware Security	
	Network Security

Robotics & Controls

Cyber Physical Systems

Wireless Network Security

Large scale networks

Statistical Signal Processing and Inference

Distributed Change Point Detection

Embedded Security

Features:

- Entity authentication
- Secure communication
- IP Protection

Challenges:

- Costly implementation
- Protocol weaknesses
- Physical attacks

ciphertext

Worcester Polytechnic Institute

((†))

Implementation Attacks

- Critical information leaked through side channels
- Adversary can extract critical secrets (keys etc.)
- Usually require physical access (proximity)

Embedded Crypto Implementations

Current Research:

- Alternative crypto schemes \rightarrow new services
- Lightweight authentication for sensor nodes
- Countermeasures against implementation attacks & tampering Worcester Polytechnic Institute

Opportunistic Spectrum Access

- Opportunistic spectrum access (OSA) is a significant paradigm shift in the way wireless spectrum is accessed
 - Instead of PUs possessing exclusive access to licensed spectrum, SUs can temporarily borrow unoccupied frequency bands
 - SUs must respect the incumbent rights of the PUs with respect to their licensed spectrum
- OSA enables greater spectral efficiency and facilitates greater user and bandwidth capacity

OSA Motivation

 The utilization efficiency of "prime" wireless spectrum has been shown to be poor

A snapshot of PSD from 88 MHz to 2686 MHz measured on July 11th 2008 in Worcester, MA (N42°16.36602, W71°48.46548)

A. M. Wyglinski, M. Nekovee, Y. T. Hou (Eds.). "Cognitive Radio Communications and Networks: Principles and Practice." (Chapter 6) Academic Press, December 2009.

Leveraging the Electrospace

Underlay Solution

A snapshot of PSD from 88 MHz to 2686 MHz measured on July 11th 2008 in Worcester, MA (N42°16.36602, W71°48.46548)

A. M. Wyglinski, M. Nekovee, Y. T. Hou (Eds.). "Cognitive Radio Communications and Networks: Principles and Practice." (Chapter 6) Academic Press, December 2009.

Overlay Solution

A snapshot of PSD from 88 MHz to 2686 MHz measured on July 11th 2008 in Worcester, MA (N42°16.36602, W71°48.46548)

A. M. Wyglinski, M. Nekovee, Y. T. Hou (Eds.). "Cognitive Radio Communications and Networks: Principles and Practice." (Chapter 6) Academic Press, December 2009.

Software Defined Radio Power Board Optical Sensor Board **FPGA Board**

COSMIAC CubeSat FPGA Board with Sensor and Power Daughtercards (no RF daughtercards are present in this photo)

Current state of the art

RFEye Spectrum Monitoring Solution

Probabilistic model

Random sampling concept

- Random sampling facilitates statistical characterization
- Random sampling designs
 - Systematic, SRS, stratified, cluster,...
- Data grouping and sample allocation are crucial to effective characterization
- Benefits
 - Dimensionality reduction, summarization, estimator variance reduction, sampling bias reduction

Results

How is secondary wireless access currently managed?

Potential vulnerability

Existing techniques

- Energy Detection
 - Possess a significant probability of missed detection
- Localization-based Detection
 - Can only be employed for stationary primary transmitters with known coordinates
- Analytical Model-based Detection
 - Only works well for a specific network model
- Signature-based Detection
 - Require special hardware or software

Proposed approach

Results

Results

Sensor Attacks

SAVES: Secure Autonomous Vehicle Embedded Computing and Sensing

- Full project plan invited for submission via NATO SPS programme
- Collaborators from Georgian Technical University and Ss. Cyril and Methodius University

Collaboratively Navigating Autonomous Systems

A 5-student MQP team focusing on collaborative autonomous vehicle networks

Combining wireless communications and networking, autonomous control, data fusion, decision making processes, image processing, and other techniques to form a simple network of autonomous vehicles that cooperate together.

Worcester Polytechnic Institute

UAV

Contact Information

Professor Alexander Wyglinski

Department of Electrical and Computer Engineering Worcester Polytechnic Institute Atwater Kent Laboratories, Room AK230

508-831-5061

alexw@ece.wpi.edu

http://www.wireless.wpi.edu/

