
Distributed simulation of
situated multi-agent systems

Franco Cicirelli, Andrea Giordano, Libero Nigro

Laboratorio di Ingegneria del Software
http://www.lis.deis.unical.it

Dipartimento di Elettronica Informatica e Sistemistica
Università della Calabria
87036 Rende (CS) – Italy

{f.cicirelli,a.giordano}@deis.unical.it, l.nigro@unical.it

http://www.lis.deis.unical.it/
http://www.lis.deis.unical.it/
http://www.unical.it/

Goal

 proposing an approach and supporting framework, for
modelling and distributed simulation of complex
situated multi-agent systems

2DSRT 2011, September 4 - 7, Salford, UK

Presentation Outline

 introducing situated agents

 discussing distributed-simulation of situated agents

 describing the proposed approach and the developed
framework

 showing achievable performance by means of a
TileWorld-based simulation model

Situated agents

 are characterized by being embedded in a
spatial environment (or territory) and by
owning spatial coordinates

 their behaviour is strongly influenced by the
owned position into the environment

 are able to move on, perceive and act-upon
the territory

 emerging properties of modelled systems may
arise by agent-to-agent or agent-to-environment
interactions

3DSRT 2011, September 4 - 7, Salford, UK

Distributed simulation of situated
agents

4DSRT 2011, September 4 - 7, Salford, UK

 situated agents are widely adopted for studying a
broad range of phenomena and systems (e.g. in
biology, sociology, wildfires)

 distributed simulation is often mandatory to cope
with the high resource demand (both in terms of
time and space) of such large models

 in a distributed context the environment becomes a
huge shared variable of a concurrent system

 suitable environment partitioning-schemas and
approaches regulating the access to the
environmental data are required (e.g. for load
balancing, data consistency, performance)

Distributing the environment (1)

5DSRT 2011, September 4 - 7, Salford, UK

A first scenario:

 the territory is modelled
as a bi-dimensional grid

 limited sensing/control
capabilities

 a hypothesis:
◦ each cell may host at most

one agent (a conflict
occurs otherwise)

 sequential simulation
and cooperative
concurrency

intersection of
action areas

Distributing the environment (2)

6DSRT 2011, September 4 - 7, Salford, UK

A second scenario:

 distributed simulation
(2 LPs)

 territory and agent
population are split

 conflicts occur on red
highlighted cells (real
parallelism)

 remote communication
is required between
LPs

LP1 LP2

Distributing the environment: a
solution (1)

7DSRT 2011, September 4 - 7, Salford, UK

LP1

LP2

Reducing remote communication:

 border areas are replicated
(gray parts)

 their size depend on visibility
radius

LP1 LP2

Distributing the environment: a
solution (2)

8DSRT 2011, September 4 - 7, Salford, UK

Avoiding conflicts:

 a Conflict Free execution
order is enforced among
agents residing on different
LPs

 conflicting agents are not
allowed to act concurrently

 no control messages are
exchanged among LPs

 no locks are used

LP1 LP2

Distributing the environment: a
solution (3)

9DSRT 2011, September 4 - 7, Salford, UK

LP1

LP2

LP1

LP2

CFN = 8

CFN = 2

Avoiding conflicts:

 Cells on border areas are
tagged with Conflict Free
Numbers (CFNs)

 two agents which are
distant less than or equal to
2*actionradius and belong
to different LPs must be
flagged with a different CFN

 CFNs are used to define a
conflict free execution
order among agents

 agents on different LPs
having the same CFNs can
really act in parallel

 tagging schema depend on
action radius

Distributing the environment: a
solution (4)

10DSRT 2011, September 4 - 7, Salford, UK

LP1

Avoiding conflicts:

 a repetitive pattern,
favouring CFN reuse, is used
(shuffled from time to time)

 CFN reuse favours
parallelism

LP2

 the assigning algorithm
scans the border area from
top to bottom and from left
to right

 the same assignment
(despite shuffling) is made by
two neighbouring LPs without
requiring any interaction by
using the current logical time
as the seed for the pseudo
random number generators

11DSRT 2011, September 4 - 7, Salford, UK

Enforcing the conflict-free execution
order: the composite logical time (CLT)

< --------------- CLT ------------- >

[Virtual time| Epoch | CFN | Step]

is the virtual time from

the model point of view

manages multiple events

at the same virtual time

used to handle

updates and

agent migrations

for conflict resolution

every time an event (message) is ready to be dispatched, its actual delivery occurs at

a time which take into account the CFN of the receiving agent

actions triggered by such event cannot cause conflicts

12DSRT 2011, September 4 - 7, Salford, UK

Distributing the environment: a
solution (5)

proposed
approach

territory and agent
population are split
among various LPs

action and visibility
radii are introduced
(neighborhood)

conflict resolution and data
consistency rely on a

composite logical time
notion which makes use of CFN

the edge portions of adjacent
regions (borders) are mirrored
among LPs and kept updated

each territory portion
is called region

migration is required
when an agent moves

among regions

such radii delimit the

area within which an

agent can efficiently

read and change the

status of the immediate

surrounding territory

13DSRT 2011, September 4 - 7, Salford, UK

Distributing the environment: the
supporting framework

realized
framework

promotes the
environment as

first-class entity
(ActorEnv)

relies on a
lightweight

actor model
of computation

within the agent neighborhood, it
permits synchronous access to

the environment
(asynchronous otherwise)

simplifies M&S tasks by
making the modeller

unaware of
distribution concerns

is added into the
Theatre multi-agent

architecture

allows the sharing
of agent state

14DSRT 2011, September 4 - 7, Salford, UK

The supporting framework: the
Neighborhood interface

Actor createAndLocate(String actClass, Position p);

void moveActor(Actor act, Position p);

void removeActor(Actor act);

List<Actor> getCell(Position p, Class actClass);

boolean isCellEmpty(Position p);

List<Actor> getActors(Class actClass);

Position getPosition(Actor act);

void addShared(String name, Class type);

<T> T getShared(String name, Class<T> type, Actor act);

<T> void setShared(String name, Class<T> type, T value, Actor

act);

Neighbourhood n = ActorEnv.getMyNeighbourhood();

A TileWorld Model as testbed

15DSRT 2011, September 4 - 7, Salford, UK

 agent’s mission: move around to
find and pick-up a tile and then move
to fill an hole and so forth until no
more tiles exist

 an hole is characterized by its depth

 holes and tiles may appear and
disappear dynamically

 different game configurations with a
huge number of randomly placed
TileWorldActor(s), TileActor(s),
HoleActor(s), and static obstacles,
were experimented

 different values for the action and
visibility radii were considered

 the goal was not to compare agent
strategies but only to check the
achievable simulation performance

A code excerpt of the TileWorldActor

16DSRT 2011, September 4 - 7, Salford, UK

//status MOVE_TO_HOLE

Neighbourhood n = ActorEnv.getMyNeighbourhood();

if(n.getShared("visible",Boolean.class,this.foundHole)){

nextPosition = makeAStepTowardAHole(this.foundHole);

if (nextPosition.isReached(n.getPosition(this.foundHole))){//fill the hole

int d = n.getShared("depth",Integer.Class,this.foundHole);

n.setShared("depth",Integer.Class,d-1,this.foundHole);

if (n.getShared("depth",Integer.Class,this.foundHole)==0){

n.setShared("visible",Booelan.Class,false,this.foundHole);

this.score += n.getShared("score",Double.Class,this.foundHole);

become(LOOK_FOR_TILE);//change status}

}else

if (!n.getCell(nextPosition,ObstacleActor.class).isEmpty())

nextPosition = changeDirection();//avoid the obstacle

n.moveActor(this,nextPosition);

}else{//Explore

this.foundHole = null;

for(HoleActor a:n.getActors(HoleActor.class))

if (n.getShared("visible",Boolean.class,a)){

this.foundHole = a;

nextPosition = makeAStepTowardAHole(this.foundHole);

n.moveActor(this,nextPosition);

break;}

if (this.foundHole == null)

become(LOOK_FOR_HOLE);//change status

}

access to neighbourhood

manage

shared

state

move on the territory

explore the territory

distribution aspects and

conflict management are

completely hidden

17

 three LPs/federates allocated on three WinXP (32 bit) Intel i7 CPU 960, 1-core, 3.20 GHz, 3GB

RAM, interconnected by a Gigabit Ethernet switch in the presence of HLA pRTI 1516

 each federate hosts a region composed of 1200x900 cells (overall territory is 1200x2700 cells)

DSRT 2011, September 4 - 7, Salford, UK

Speedup vs. TileWorldActors
(variable load)

1
2

3

18DSRT 2011, September 4 - 7, Salford, UK

The variable-load scenario: is it
appropriate?

1

2 3

19DSRT 2011, September 4 - 7, Salford, UK

Speedup vs. Action and Visibility radii
(constant load)

1 2

3 4

On-going and future work

 experimenting with the use of the infrastructure in large
and highly dynamic systems (e.g. inspired by biology or

social science)

 improving the ActorEnv interface (e.g. by allowing a more

fine grained read/write control on shared data and by providing a
more complex pattern-matching schema for neighbourhood
exploration)

 specializing the approach so as to exploit the potential
of modern multi-core hardware

 generalizing territory management (e.g. toward hexagonal

space cells, continuous spaces, diffusive spaces and n-
dimensional spaces)

21DSRT 2011, September 4 - 7, Salford, UK

