
A Parallel Interest Matching Algorithm for Distributed-
Memory Systems

Elvis Liu
Georgios Theodoropoulos

2 Georgios Theodoropoulos

Outline

•  Introduction
– Distributed Virtual Environments (DVE)
–  Interest Management

•  Parallel Interest Matching
– Algorithm
–  Load-balancing

•  Experimental Results
•  Conclusions

3 Georgios Theodoropoulos

Distributed Virtual Environments
(DVE)

•  Allow multiple users interact in real-time even
though they are in different physical locations

•  Commercial Application – Massively
Multiplayer Online Games (MMOGs)

•  Academic/Military Application – HLA
compliant systems

•  Scalability
•  Message broadcasting
•  Interest Management

4 Georgios Theodoropoulos

Seamed Zone-based Schemes

•  Used by most
MMOGs: FFXI,
Everquest, GuildWars

•  Divide the virtual
world into zones

•  Only receive update
from one zone

•  No interest matching
is required

5 Georgios Theodoropoulos

Seamless zone-based Schemes

•  Used by NPSNET
•  Divide the virtual

world into zones
•  Invisible border
•  Area of Interest (AOI)
•  Interest Matching –

O(n) for n AOIs

6 Georgios Theodoropoulos

Aura-based Schemes

•  Used by MASSIVE
•  Higher filtering

accuracy than zone-
based schemes

•  Interest Matching –
O(nm) for n update
regions and m
subscription regions

S

U

S

 U

7 Georgios Theodoropoulos

Filtering Precision vs. Runtime
Efficiency

•  A trade-off
•  Zone-based schemes: Good runtime

efficiency but poor filtering precision
•  Aura-based schemes: Good filtering precision

but poor runtime efficiency
•  Existing interest matching algorithms try to

deal with this problem

8 Georgios Theodoropoulos

Existing Interest Matching
Algorithms

•  Try to improve the runtime efficiency of
interest matching

•  Multidimensional Binary Trees (Van Hook
1997)

•  Collision Detection Algorithm (Morgan 2004)
•  Sort-based (Raczy 2005, Pan 2007, Liu 2005)
•  All of the above are serial algorithms

9 Georgios Theodoropoulos

Parallel Processing

•  Serial algorithms – Poor workload sharing
•  Need of parallel interest matching algorithm
•  Commercial applications (e.g. MMOGs)

usually use shared-memory multiprocessors
as servers

•  Parallel Processing revolution – multicore
processors becoming mainstream

•  Heterogeneous platforms

10 Georgios Theodoropoulos

Parallel Interest Matching

•  Enhance runtime efficiency by parallel
processing

•  Two phases
– First Phase: Spatial Decomposition
– Second Phase: Sorting and Matching

11 Georgios Theodoropoulos

Space Decomposition

•  Decompose the multidimensional virtual
space into “flat subdivisions”

•  Determine the index for each subdivision
•  Work Unit (WU): the interest matching

process within a space subdivision
•  WU-Node map: contains the information of

the space subdivisions that are currently
being processed by a node

12 Georgios Theodoropoulos

WU-Node Map

0

0 1

1

2

2

NodeA NodeANodeA

NodeA NodeCNodeB

NodeB NodeC NodeC

• NodeA: WU(0,2),
WU(1,1), and WU(1,2)

• NodeB: WU(0,0) and
WU(0,1)

• NodeC: WU(1,0),
WU(2,0), and WU(2,1)

13 Georgios Theodoropoulos

Space Decomposition (cont.)

•  At the initialisation stage, an equal number of WUs is
assigned to each node

•  Regions are distributed to different nodes according to
the space subdivisions they reside in
–  If a region lies in multiple space subdivisions that are owned by

different nodes, it would be distributed to all of them.

14 Georgios Theodoropoulos

Spatial Hashing

•  Position and size of a region may be modified
dynamically during simulation

•  Owner node is responsible to determine
whether the region in question is changing
spaces

•  Construct a hash table with the indices
•  Hash all update regions and subscription

regions into the hash table
– Compute hash value H(v), for each vertex v of a

region

15 Georgios Theodoropoulos

Hash Function

•  xi: coordinate of vertex on dimension i
•  li: Length of subdivision on dimension i

16 Georgios Theodoropoulos

Hashing for Space Subdivisions

•  A is hashed into (0,1)
•  B is hashed into (0,0),

(0,1), (1,0) and (1,1)
•  C is hashed into (1,1)

and (1,2)
•  D is hashed into (1,0),

(1,1), (2,0) and (2,1)

17 Georgios Theodoropoulos

Hash Table

(0,0) B
(0,1) A,B
(0,2)
(1,0) B,D
(1,1) B,C,D
(1,2) C
(2,0) D
(2,1) D
(2,2)

Table Slot

18 Georgios Theodoropoulos

After Hashing

•  Hash table collision => at least two regions
are in the same subdivision

•  Each slot of the hash table (with collision)
represents a WU

19 Georgios Theodoropoulos

Load Balancing
•  Two algorithms

–  (1) Redistribute the WUs of an overloaded node to
the least loaded node

–  (2) Redistribute the WUs of an overloaded node to
the least loaded neighbour node

•  Isolated WUs
– All adjacent WUs are owned by different nodes
–  Increases the communication overhead of border

crossing
•  Algorithm (2) decreases the chance of

creating isolated WUs

20 Georgios Theodoropoulos

The Second Phase

•  A sorting algorithm based on dimension
reduction is used to determine the
overlapping status of the regions

21 Georgios Theodoropoulos

Dimension Reduction

•  X-axis overlaps: B-C

•  Y-axis overlaps: A-C,
A-B, B-C, B-D, C-D

•  2D overlaps: B-C

y

x

Two regions overlap iff their extents overlap on all dimensions

22 Georgios Theodoropoulos

Sorting and Matching

•  Construct a list of end-points for each
dimension

•  Determine which extents overlap by sorting
the lists

•  Re-sort the lists using insertion sort during
runtime

23 Georgios Theodoropoulos

Temporal Coherence

•  Assumption: Time-steps are small enough
that entities do not travel large distance
–  i.e. Before re-sorting the lists of end-points, they

would be nearly sorted
•  Insertion sort (with original complexity O(n2))

can be done in linear time

24 Georgios Theodoropoulos

Configuration Scenarios

25 Georgios Theodoropoulos

Experiments
•  Serial interest matching by sorting algorithm

(SIM)
•  Parallel interest matching with load-balancing

algorithm (1) (DIM)
•  Parallel interest matching with load-balancing

algorithm (2) (AltDIM)
•  Parallel interest matching without load-balancing

(DIM\LB)
•  DIM without communication overhead (DIM\M)
•  AltDIM without communication overhead (AltDIM

\m)

26 Georgios Theodoropoulos

Results

27 Georgios Theodoropoulos

Results

28 Georgios Theodoropoulos

Conclusions

•  A parallel interest matching approach
•  Suitable for distributed-memory systems
•  More computationally efficient than existing

(serial) sorting algorithms
•  High filtering accuracy
•  HLA DDM compatible
•  Two load-balancing algorithms

