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I: Performance Capture

Multiple view video 3D video



Model-free: 
 Free-viewpoint replay [Virtualized Reality - Kanadeʼ96]
 Photo-realistic rendering [Zitnickʼ04, Starckʼ05]

 + any scene
 - Unstructured representation
 - No change in movement

I: Video-based reconstruction of people
To appear in the ACM SIGGRAPH conference proceedings

Figure 8: Side-by-side comparison of input and reconstruction of
a dancing girl wearing a skirt (input and virtual viewpoints differ
minimally). Body pose and detailed geometry of the waving skirt,
including lifelike folds and wrinkles visible in the input, have been
recovered.

eral, and a more sophisticated yet slower finite element deformation
could reduce this problem already at the global pose capture stage.

Despite these limitations we have presented a new non-intrusive ap-
proach to spatio-temporally dense performance capture from video.
It deliberately abandons traditional motion skeletons to reconstruct
a large range of real-world scenes in a spatio-temporally coherent
way and at a high level of detail.

7.2 Applications

In the following, we briefly exemplify the strengths and the usabil-
ity of our algorithm in two practical applications that are important
in media production.

3D Video Since our approach works without optical markings,
we can use the captured video footage and texture the moving ge-
ometry from the input camera views, for instance by using the
blending scheme from [Carranza et al. 2003]. The result is a 3D
video representation that can be rendered from arbitrary synthetic
views (see video and Fig. 10(l),(m)). Due to the highly-detailed un-

Figure 9: Input frame (l) and reconstructions using a detailed (m)
and a coarse model (r). Although the fine details on the skirt are due
to the input laser scan (m), even with a coarse template, our method
captures the folds and the overall lifelike motion of the cloth (r).

Figure 10: (l),(m) High-quality 3D Video renderings of the dancer
wearing a skirt. (r) Fully-rigged character automatically estimated
from a capoeira turn kick output.

derlying scene geometry the visual results are much better than with
previous model-based or shape from silhouette-based 3D video
methods.

Reconstruction of a fully-rigged character Since our method
produces spatio-temporally coherent scene geometry with practi-
cally no tangential distortion over time, we can reconstruct a fully-
rigged character, i.e. a character featuring an animation skeleton,
a surface mesh and associated skinning weights, Fig. 10(r), in case
this is a suitable parametrization for a scene. To this end we feed
our result sequences into the automatic rigging method proposed
in [de Aguiar et al. 2008] that fully-automatically learns the skele-
ton and the blending weights from mesh sequences. Although not
the focus of this paper, this experiment shows that the data captured
by our system can optionally be converted into a format immedi-
ately suitable for modification with traditional animation tools.

8 Conclusion

We have presented a new approach to video-based performance
capture that produces a novel dense and feature-rich output for-
mat comprising of spatio-temporally coherent high-quality geome-
try, lifelike motion data, and optionally surface texture of recorded
actors. The fusion of efficient volume- and surface-based deforma-
tion schemes, a multi-view analysis-through-synthesis procedure,
and a multi-view stereo approach enables our method to capture
performances of people wearing a wide variety of everyday apparel
and performing extremely fast and energetic motion. The proposed
method supplements and exceeds the capabilities of marker-based
optical capturing systems that are widely used in industry, and will
provide animators and CG artists with a new level of flexibility in
acquiring and modifying real-world content.
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Model-based:  
    Single view [Hiltonʼ00, Blackʼ08, Gallʼ08]   
    Multi-view [Carranzaʼ03, Starckʼ03]

  High-detail [deAguiarʼ08]

 + Structured representation
 + User control of movement
 - Fixed scene
 - Limited visual quality

[de Aguiar’08]                  [Starck’03]

[Starck’05]



I: Multiple view reconstruction

Visual Hull

Stereo Refinement
[Starck et al. CVIU’08]



SurfCap 3D Video Database [Starck et al. CGA’07]

I: Studio Capture



I: Outdoor Capture

Problems:
large capture volume (film set/soccer pitch)
uncontrolled environment 
non-uniform (moving) backgrounds
less accurate camera calibration (moving cameras)



I: Robust Multi-view Reconstruction

Capture Segmentation View-dependent
Reconstruction

Fusion Stereo 
Rendering



I: Multi-view Segmentation
Bayesian inference to propagate trimap labels:

exploit natural image matting
manual trimap labels in single view (~every 100frames) 
spatio-temporal propagation of trimap labels
local & global colour statistics + epipolar constraint



I: Multi-view Segmentation

Trimap label inference:

Colour Models 

Local background 

Global background/foreground

Local foreground estimated from initial foreground/background labelling

Natural image matting - closed form solution[Levin et. al. CVPR’96]

label likelihood for 
kth colour model

model prior pixel prior

[Sarim et al. ICIP’10]



I: Multi-view segmentation



I: Robust Reconstrution

View-dependent joint reconstruction & segmentation
pixel label estimation: depth d, layer l

constraints

d,l

initial multi-view
segmentation

initial depth
(visual-hull) [Guillemaut et al. IJCV’11]



I: Robust Reconstruction

Formulate as an energy minimisation problem:

2D cues 3D cues

1. Foreground/Background colour: 

2. Contrast
4. Surface smoothness: 

3. Multi-view image matching: 

Graph-cut solution using alpha expansion [Boykov PAMI’01]
[Guillemaut et al. IJCV’11]





I: Outdoor Stadium Sports

2D matting
& calibration

Joint reconstruction
& segmentation



I: 3D video performance capture 
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II: Structured Representation

3D video performance capture

unstructured mesh sequences

no temporal correspondence

Goal: temporally coherent structure with correspondence

3D video 4D  model



Cagniart et al. ECCV’10

Starck et al. ICCV’07

Figure 8. Surface texture transfer. Left: the yoga performer is matched with an non-textured surface model, and transfers her texture to
it. Right: the capoeira performer transfers his texture to the model from the free sequence. We can observe a globally good mapping.

Figure 9. Wide-timeframe matching. Dense matching is performed between arbitrary frames of the free sequence. Left: frame #0 is
matched with frame #125. Right: frame #0 is matched with frame #29. The links are color coded so that lighter colors (yellow) represent
the most distant parts. We can observe a very dense matching.

Figure 10. Motion flow from the dance sequence. Left: frames 620-636. Right: frames 607-624. Dense flows are extracted between
consecutive frames.

Figure 11. Motion flow from the capoeira sequence. Two views of frames 80-96. Dense flows are extracted between consecutive frames.
Tung et al.
CVPR’10
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(a) Sparse matching (b) Dense matching (c) LSCM matching (d) LSCM error (e) Our approach

Figure 6. Comparison with LSCM approach [29] for dense surface matching. (matched/total = 1455/1635) (best viewed in color). Notice
the high number of flipped triangles in (c)

(a) Sparse matching (b) Dense matching
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(c)
Figure 8. Dense matching under multiple articulated deformations.
(matched/total = 1224/1786)(best viewed in color)

to determine optimal partial correspondences.
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shape as being the surface that yields consistent image optical flow
measurements. If the point x lies on the surface, (10) must hold for
every camera i. Therefore, it is possible to use the degree to which
(10) is consistent across cameras as information for a flow-based
reconstruction algorithm. Such an approach would, however, be
very susceptible to outliers. A single large magnitude flow which
was wrong could always make the equations inconsistent. We
therefore take a slightly different approach.

The solution of (10) can be written in the following form:

dx

dt
¼ @ui

@x

! "?dui

dt
þ ! riðuiÞ; ð18Þ

where @ui
@x

# $?
is the pseudoinverse of @ui

@x , riðuiÞ is the direction of a
ray through the pixel ui, and ! is an unknown constant that
depends upon instantaneous properties of the surface f . (Equation
(18) holds because riðuiÞ is in the null-space of @ui

@x .) Therefore, we
have the following constraint on the the scene flow:

miðxÞ %
dx

dt
& @ui

@x

! "?dui

dt
' riðuiÞ

% &
% dx
dt

¼ 0; ð19Þ

where miðxÞ ¼ @ui
@x

# $? dui
dt ' riðuiÞ is a vector which is perpendicular

to the plane defined by the camera center and the optical flow in

the image plane. Hence, if x is actually a point on the surface, the
vectorsmiðxÞ should all lie in a plane (the one perpendicular to the
scene flow dx

dt ). We form a measure of how coplanar the vectors are
by computing the 3' 3 matrix:

MðxÞ ¼
X

i

m̂mim̂m
T
i ; ð20Þ

where m̂mi is mi normalized to a unit vector. The normalization
makes the algorithm less susceptible to incorrect large magnitude
flows. The smallest eigenvalue " ¼ "ðxÞ of M is a measure of
noncoplanarity. We use N ( "ðxÞ as a measure of the likelihood
that x lies on the surface, where N is the number of cameras.

We discretize the scene into a three-dimensional array of
voxels, as was done in the voxel coloring algorithm of [16]. We
then compute N ( "ðxÞ for each voxel. We ignore visibility, but
this does not significantly affect the performance because our
coplanarity measure is not significantly affected by outliers. (The
algorithm could be extended to keep track of the visibility, similar
to the flow computation algorithm in the previous section.)

3.4.1 Results

We present the results of this algorithm in Fig. 7, for the same
sequence shown in Fig. 2. For all 51 cameras, we computed the
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Fig. 5. The final scene flow computed from the inputs in Fig. 2: (a) the complete model and (b) a close up of the dancer’s arm. Notice that the overall motion of the dancer
is highly nonrigid.

Fig. 6. The scene flow shown together with the voxel model; i.e., a combination of
Fig. 4 and Fig. 5b.

Fig. 7. Three volume renderings of the coplanarity measure N ( "ðxÞ show that
the gross scene structure is recovered fairly well. Note, however, that this
algorithm only recovers structure where the scene is moving. Hence, certain parts
of the scene, such as the legs, are not recovered as well as others. This
information could be combined with traditional sources of information to further
enhance the robustness of stereo. See the accompanying movie, volume.mpg,
available on the Computer Society’s Digital Library at http://www.computer.org/
publications/dlib, for a flyby movie of the volume rendering generated.

Vedula et al.
PAMI’05

II: Non-rigid Surface Tracking



II: Global Non-rigid Alignment

3D video sequences Shape similarity tree 4D model



II: Global Non-rigid Alignment
Shape similarity tree construction

3D shape similarity

fully connected graph construction

graph optimisation for shortest non-rigid alignment path

3D video sequences Shape similarity tree
shape similarity

matrix
graph



II: Global Non-rigid Alignment

Shape similarity:  
spherical shape histogram [Huang et al. IJCV’10]
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II: Global Non-rigid Alignment

0

50

100

shell 1shell 2 ... shell N

B.1. Character1 177

Tense

Walk

Walk2Jog

Walk2Stand

B.1. Character1 177

Tense

Walk

Walk2Jog

Walk2Stand

0

45

90

shell 1shell 2 ... shell N

Shape similarity:

S(Mi ,M j ) = minφ Hi (r) − H j (r,φ)
r=1

N

∑
2



Dissimilar 1

Similar 0

Frame to Frame Comparison
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2motions10Similarity
Matrix

Compute similarity matrix for all frames (420x420 frames)



II: Global Non-rigid Alignment

Optimise for shortest path in fully connected graph:

fully connected
graph

 
argmin

P∈
S(Mi ,M j )

∀(i, j )∈P
∑

⎛

⎝⎜
⎞

⎠⎟

sum of similarities S() for all edges in p

Solution: minimum spanning tree
[Budd et al. 3DIMPVT’11,Huang CVPR’11]



II: Global non-rigid alignment 



II: Global non-rigid alignment

Non-rigid alignment:

shape similarity tree gives minimum non-rigid 
deformation for alignment of all frames

Laplacian deformation framework

Geometric & photo-metric feature constraints

Shape similarity 4D model



Laplacian deformation framework [Sorkine CGF’06]:

II: Global non-rigid aligment

Lx = δ

mesh
Laplacian

vertex
positions

differential
coordinates

Laplacian  represents mesh shape & connectivity

Energy minimisation:

argmin
X

Lx − δ (x0 )
2
+ W (x − xC )

2

original
position constraints

constraints given by geometric & photometric correspondence
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III: Interactive Animation

Interactive control of character animation:

editing motion

high-level parameterisation of motion

transitions between motions

4D model
Interactive
Animation



Skeletal Character Animation

Motion Editing Motion Parameterisation

Motion Graphs
To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

Parametric Motion Graphs

Rachel Heck and Michael Gleicher∗
University of Wisconsin-Madison

Figure 1: An interactively controllable walking character using parametric motion graphs to smoothly move through an environment. The
character is turning around to walk in the user-requested travel direction, depicted by the red arrow on the ground.

Abstract

In this paper, we present an example-based motion synthesis tech-
nique that generates continuous streams of high-fidelity, control-
lable motion for interactive applications, such as video games. Our
method uses a new data structure called a parametric motion graph
to describe valid ways of generating linear blend transitions be-
tween motion clips dynamically generated through parametric syn-
thesis in realtime. Our system specifically uses blending-based
parametric synthesis to accurately generate any motion clip from
an entire space of motions by blending together examples from that
space. The key to our technique is using sampling methods to iden-
tify and represent good transitions between these spaces of motion
parameterized by a continuously valued parameter. This approach
allows parametric motion graphs to be constructed with little user
effort. Because parametric motion graphs organize all motions of a
particular type, such as reaching to different locations on a shelf, us-
ing a single, parameterized graph node, they are highly structured,
facilitating fast decision-making for interactive character control.
We have successfully created interactive characters that perform se-
quences of requested actions, such as cartwheeling or punching.
CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation
Keywords: motion capture, motion synthesis, motion graphs

1 Introduction

In many interactive applications, such as video games and simula-
tions, humanoid characters play an essential role. One important
aspect of these characters is the way they move. These movements

∗e-mail:{heckr, gleicher}@cs.wisc.edu

must not only be of sufficient fidelity but must also respond to user
control and dynamically changing environments. Ideally, any mo-
tion synthesis method used in an interactive application should effi-
ciently produce continuous streams of high-fidelity motions; be re-
sponsive to changing inputs; generate motions that accurately meet
supplied constraints, such as the location where a character should
punch; and allow easy authoring of new movements.
Computer animation researchers and practitioners have provided

a number of methods for generating character motions. However,
existing approaches make limiting tradeoffs between motion qual-
ity, accuracy, responsiveness, and ease of authoring. Methods used
in practice for creating the motions in video games require exten-
sive work to author the structures used for motion control, and often
the results are still limited in their movement quality and/or con-
trol accuracy. Alternatively, methods developed by animation re-
searchers provide automated authoring of high-fidelity motions, but
these methods fail to simultaneously provide the accurate control,
flexibility in movement types, and responsiveness demanded by in-
teractive applications. Our goal is to provide a motion synthesis
technique that produces accurate, controllable, high-fidelity motion
streams and allows automated authoring of interactive characters.
In this paper, we introduce the parametric motion graph,

an example-based motion synthesis data structure. Like other
example-based data structures, parametric motion graphs provide
easy authoring of high-quality motions but also supply the respon-
siveness, precise control, and flexibility demanded by interactive
applications. A parametric motion graph describes possible ways
to generate seamless streams of motion by concatenating short mo-
tion clips generated through blending-based parametric synthesis.
Blending-based parametric synthesis allows accurate generation of
any motion from an entire space of motions, by blending together
examples from that space. For example, parametric synthesis can
generate motions of a person picking up an item from any loca-
tion on a shelf by blending together a small set of example mo-
tions. While neither seamless motion concatenation nor parametric
synthesis is a new idea, by combining both techniques, paramet-
ric motion graphs can provide accurate control through parametric
synthesis and can generate long sequences of high-fidelity motion
without visible seams using linear blend transitions.
In contrast to many other automated methods for representing

transitions between motions, parametric motion graphs are highly

1
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Motion Graphs
Lucas Kovar

University of Wisconsin-Madison
Michael Gleicher∗

University of Wisconsin-Madison
Frédéric Pighin†

University of Southern California
Institute for Creative Technologies

Abstract

In this paper we present a novel method for creating realistic, con-
trollable motion. Given a corpus of motion capture data, we au-
tomatically construct a directed graph called a motion graph that
encapsulates connections among the database. The motion graph
consists both of pieces of original motion and automatically gener-
ated transitions. Motion can be generated simply by building walks
on the graph. We present a general framework for extracting par-
ticular graph walks that meet a user’s specifications. We then show
how this framework can be applied to the specific problem of gen-
erating different styles of locomotion along arbitrary paths.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: motion synthesis, motion capture, animation with con-
straints

1 Introduction

Realistic human motion is an important part of media like video
games and movies. More lifelike characters make for more immer-
sive environments and more believable special effects. At the same
time, realistic animation of human motion is a challenging task, as
people have proven to be adept at discerning the subtleties of human
movement and identifying inaccuracies.

One common solution to this problem is motion capture. However,
while motion capture is a reliable way of acquiring realistic human
motion, by itself it is a technique for reproducing motion. Motion
capture data has proven to be difficult to modify, and editing tech-
niques are reliable only for small changes to a motion. This limits
the utility of motion capture — if the data on hand isn’t sufficiently

∗e-mail:{kovar,gleicher}@cs.wisc.edu
†e-mail:pighin@ict.usc.edu

similar to what is desired, then often there is little that can be done
other than acquire more data, a time-consuming and expensive pro-
cess. This in particular is a problem for applications that require
motion to be synthesized dynamically, such as interactive environ-
ments.

Our goal is to retain the realism of motion capture while also giving
a user the ability to control and direct a character. For example, we
would like to be able to ask a character to walk around a room
without worrying about having a piece of motion data that contains
the correct number of steps and travels in the right directions. We
also need to be able to direct characters who can perform multiple
actions, rather than those who are only capable of walking around.

This paper presents a method for synthesizing streams of motions
based on a corpus of captured movement while preserving the qual-
ity of the original data. Given a set of motion capture data, we com-
pile a structure called a motion graph that encodes how the captured
clips may be re-assembled in different ways. The motion graph is a
directed graph wherein edges contain either pieces of original mo-
tion data or automatically generated transitions. The nodes then
serve as choice points where these small bits of motion join seam-
lessly. Because our methods automatically detect and create transi-
tions between motions, users needn’t capture motions specifically
designed to connect to one another. If desired, the user can tune the
high-level structure of the motion graph to produce desired degrees
of connectivity among different parts.

Motion graphs transform the motion synthesis problem into one of
selecting sequences of nodes, or graph walks. By drawing upon
algorithms from graph theory and AI planning, we can extract graph
walks that satisfy certain properties, thereby giving us control over
the synthesized motions.

To demonstrate the potential of our approach, we introduce a sim-
ple example. We were donated 78.5 seconds of motion capture, or
about 2400 frames of animation, of a performer randomly walking
around with both sharp and smooth turns. Since the motion was
donated, we did not carefully plan out each movement, as the liter-
ature suggests is critical to successful application of motion capture
data [Washburn 2001]. From this data we constructed a motion
graph and used an algorithm described later in this paper to extract
motions that travelled along paths sketched on the ground. Charac-
teristic movements of the original data like sharp turns were auto-
matically used when appropriate, as seen in Figure 1.

It is possible to place additional constraints on the desired motion.
For example, we noticed that part of the motion had the character
sneaking around. By labelling these frames as special, we were able
to specify that at certain points along the path the character must
only use sneaking movements, and at other parts of the motion it
must use normal walking motions, as is also shown in Figure 1.

1

Kovar&Gleicher’02

SIGGRAPH 95, Los Angeles, August 6–11 COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1995

Figure 2: A frame from the original walking sequence, and the cor-
responding frames from a number of warped sequences. Clockwise
from upper left: The original sequence; stepping onto a block; car-
rying a heavy weight; walking on tiptoe; bending through a door-
way; stepping around a post; trucking; stepping over an obstacle

ing with a limp; a stooped walk; a “trucking” gait, and a “sneaky”
walk. Figure 2 shows frames from these sequences. Figures 4 and
5 illustrate the “low doorway” in detail: figure 4 shows the original
and warped motion curves for the left and right hip joints, and figure
5 shows selected frames from the original and warped sequences.
One application of motion warping is on-the-fly motion synthesis

for virtual environments or games. We explored this idea by warp-
ing captured motion clips of a tennis player performing backhand,
forehand, and overhead shots. Frames from several forehand shots
are shown in figure 3. We found that we could produce realistic ten-
nis shots over a wide range of ball trajectories by manually choos-
ing the most appropriate motion clip, and setting a single key plac-
ing the racket on the ball at the desired moment of impact. The next
stepwill be to automate clip selection and keyframing, possibly with
blending between the stored clips, to create a parameterized tennis
player.
We have also used motion warping to edit a clip created by con-

ventional keyframing: we warped a straight-line cyclic walk of a
bipedal creature into an animation where the same creature traverses
an irregular series of stepping stones. The same effect could have
been acheived by modifying all of the original keyframes, instead of
warping. However, many more keys were used to specify the mo-
tion initially than were required to warp it.

5 Conclusion
We have described a simple technique for editing of captured or
keyframed motion by warping and blending. We demonstrated that
a wide range of new realistic motions can be created by warping
and joining captured motion clips, using only a fewmotion-warping
keyframes tomodify the prototype motions, and using simple blend-
ing to join overlapping motion clips.
A key advantage of motion warping is that it fits well into the fa-

miliar keyframe animation paradigm, allowing a wide range of ex-
isting tools, techniques, and skills to be brought to bear. On the other
hand, motion warping shares some limitations of standard keyfram-
ing, for example the difficulty of enforcing geometric constraints
between keys. We believe that constraint techniques applicable to
conventional keyframing can be applied to motion warping as well.
A further limitation is that motion warping is a purely geometric

technique, not based on any deep understand of the motion’s struc-
ture. Consequently, as with analogous image morphing techniques,

Figure 3: A frame from a captured motion sequence of a tennis fore-
hand shot (green), and the corresponding frames from two warped
sequences (red and blue.) Only a single keyframe at the moment of
impact was required to produce the warped sequences.

extreme warps are prone to look distorted and unnatural. A physi-
cally based technique in the spirit of [10] might overcome this lim-
itation.
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Witkin’95

2.1.1 Filtering Algorithm
The length (number of frames) of each signal determines how
many frequency bands ( ) are being computed:

let 2 2 1, then

Instead of constructing a pyramid of lowpass and bandpass
sequences where each successive sequence is reduced by a factor
of two, alternatively the sequences are kept the same length and the
filter kernel ( ) is expandedat each level by inserting zeros between
the values of the filter kernel ( , , below) [3]. For example, with
a kernel of width 5,

1

2 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 etc.,

where 3 8, 1 4 and 1 16. Since we are dealing
with signals rather than images, the storage penalty compared to a
true pyramid is not as significant ( versus 4 3 , where

number of data points in original signal), while reconstruction
is faster since the signal does not have to be expanded at each level.
We now state the motion multiresolution algorithm in detail. Steps
1 to 5 are performed simultaneously for each motion parameter
signal:

1. calculate lowpass sequenceof all signals 0 by
successively convolving the signalwith the expandedkernels,
where 0 is the original motion signal and is the :

1 1 ;

This can be calculated efficiently by keeping the kernel con-
stant and skipping signal data points ( ranges over all data
points of a signal)2:

1

2

2

1 2 ;

2. obtain the bandpass filter bands 0 :

1;

3. adjust gains for each band and multiply ’s by their current
gain values (see example below).

4. blend bands of different motions (optional, see multitarget
interpolation below).

5. reconstruct motion signal:

0

1

0

2We implemented several treatments of the boundary of the signal, that is when
2 lies outside the domain of the signal. The two most promising approaches

have proved to be reflecting the signal, and keeping the signal values constant (i.e.
equal to the first/last data point) outside its boundaries.

band0   band1  band2   band3  band4  band5  band6

band0   band1  band2   band3  band4  band5  band6

band0   band1  band2   band3  band4  band5  band6

1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00

1.73 1.732.70

2.30 3.01

3.013.71 −3.711.46

Figure 3: Adjusting gains of bands for joint angles; top:
increasing middle frequencies; middle: increasing low
frequencies; bottom: using negative gain value.

2.1.2 Examples
An application of motion multiresolution filtering is illustrated in
Figure 3. Displayed like an equalizer in an audio amplifier, this is a
kind of graphic equalizer for motion, where the amplitude (gain) of
each frequencyband can be individually adjusted via a slider before
summing all the bands together again to obtain the final motion. A
step function shows the range and effect of changing frequency
gains. We applied this approach successfully to the joint angles
(70 degrees of freedom) of a human figure. The same frequency
band gains were used for all degrees of freedom. In the example
illustrated at the top of Figure 3, increasing the middle frequen-
cies (bands 2, 3, 4) of a walking sequence resulted in a smoothed
but exaggerated walk. By contrast, increasing the high frequency
band (band 0) added a nervous twitch to the movement (not shown
in Figure 3), whereas increasing the low frequencies (bands 5, 6)
generated an attenuated, constrainedwalk with reduced joint move-
ment (Figure 3 middle). Note that the gains do not have to lie in the
interval 0 1 . This is shown at the bottom of Figure 3, where band
5 is negative for a motion-captured sequenceof a figure knocking at
the door, resulting in exaggerated anticipation and follow-through
for the knock. We also applied the same filtering to the joint posi-
tions (147 degrees of freedom) of a human figure. Increasing the
gains for the middle frequency bands of a walking sequence pro-
duced a slight scaling effect of the end effectors, and resulted in a
squash-and-stretch cartoon walk (Figure 4).

From the examples, it becomes apparent that some constraints
such as joint limits or non-intersectionwith the floor can be violated
in the filtering process. Ourmotion-editing philosophy is to employ
constraints or optimization after the general character of the motion
has beendefined (see displacementmapping in section5 below; or a

Brundelin’95
knowledge- 

able
clueless

sa
d

ha
pp

y

Figure 3: A walk sampled across two emotional axes. The green figures are the example motions. The rest
are created through the verb/adverb mechanism.
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III: 3D video concatenation [Huang et al. CVPR’09]

Start-Key End-Key 

TextText

key start key end

surface motion graph representation

key-frame animation



III: 3D video concatenation [Huang et al. CVPR’09]



III: 4D motion editing

Goal: Interactive editing of 4D models

Space-time key-frame editing

Laplacian deformation framework

learnt 4D motion space

[Tejera et al. CVMP’11]



III: 4D motion editing

Laplacian deformation in learnt motion space r:

argmin
x,r

Lx − δ (r) 2 + W (x − xC )
2

learnt 4D 
space

user specified 
constraints

surface deformation constrained to learnt space to preserve anatomical structure

δ (r) = δ + rk
k=1

L

∑ ek

learnt 4D basis
in differential coordinates

[Tejera et al. CVMP’11]



III: 4D motion editing

Key-frame edits propagated over space-time window

(a) Original galloping sequence.

(b) Top row: linear interpolation. Middle row: non-linear interpolation. Bottom row: constraint interpolation. The edited mesh

is shown at the right of the figure, and the frame subsequent to the propagation window is shown at the left.

Figure 7: Comparison of the propagation of an edit using three different interpolation methods.

[Tejera et al. 2011]



III: 4D motion editing

[Tejera et al. 2011]



III: 4D motion parameterisation

High-level real-time motion control

parameters: walk speed/direction, jump height etc

combine multiple skeletal sequences [Rose’98]

solution: mesh sequence blending ie walk/run

TEMPLATE DESIGN © 2008 
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Abstract 

Research in human motion synthesis and human 
motion parametrisation has been so far mostly 
based on skeleton data, mainly due to the 
difficulties in capturing more complex forms of 
data. Recent methods have succeeded in 
capturing and representing surface and texture 
information from a human motion, which has 
triggered researchers to work not only with 
skeleton but also with surface data. The work 
presented here introduces a novel semi-
automatic approach to reuse 3D video mesh 
sequences, creating a parametrised space in 
which a 3D-mesh character can be interactively 
controlled without an underlying skeleton. Our 
system is able to create in real time any 
movement derived from a linear combination of 
the captured 3D video sequences, and to 
seamlessly change parameters during animation. 

Building a parametric space 

2. Then, given t the requested frame number of 
the interpolated sequence, the equivalent 
frames number ti and tj in the original 
sequences are computed as follows: 

3. And finally, the  requested pose        is     
computed interpolating the corresponding 
frames in the original sequences 
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Our parametric space is built in real time from 
two or more aligned 3D video sequences, in 
which we assume that meshes have frame-to-
frame vertex correspondence and that a similar 
action is happening in all of them, i.e., a walk and 
a run where the actor always performs two steps, 
starting with the left foot. 

Given the two following input mesh sequences, 

  Mi =  

  Mj =  

containing Ti and Tj frames respectively, and the 
blending weight , any new mesh mnew(t) derived 
from a linear combination of them can be 
computed using a three-step algorithm as 
follows: 

1. Initially we compute the total length Tnew of 
the new sequence Mnew as follows: 

   Tnew = Ti + (1 - )Tj  
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Figure 1 shows how a parameterised space 
created by two sequences can be represented, 
and how mnew(t) can be geometrically computed. 
Figure 2 shows a possible path inside this space 
that would seamlessly transfer the 3D-mesh 
character from Mj to Mi. Considering n input 
sequences, for any given frame showed in our 
interactive scenario, the algorithm detailed above 
is sequentially executed (n - 1) times, taking as 
inputs an original sequence Mi and the output of 
the previous iteration. Each of the iterations is 
parameterised by an . In the first iteration, the 
two sequences M1 and M2 are used. 

Figure 1: In orange, the continuous parametric space 
built from the 3D-video sequences Mi and Mj (the blue 
lines). The parameterised mesh mnew(t) is found using its 
equivalent meshes mi(ti) and mj(tj) in the original 
sequences.  

Figure 2: In green, a path through the parametric space 
created from Mi and Mj that produces a seamless 
transition between the two. The vertical line segments 
represent all the parameterised meshes mnew(t) derived 
along the way.  

Results 

Future work 

Figure 3: Four frames of a 3D mesh sequence. This 
sequence was used as one of the inputs in our 
framework.  

Figure 4: Screenshot of our 3D video animation 
scenario. In orange, the path interactively travelled by 
the user.     

The proposed approach is able to generate in 
real time any parametrised mesh derived from n 
input 3D video sequences, using n - 1 
parameters. We successfully built a 3D OpenGL 
scenario from four synthetically generated 
sequences–a two-step walk, a two-step run, a 
45º right turn and a 45º left turn– with known 
vertex correspondence, in which a character can 
naturally move at any intermediate speed and 
perform any form of turn interactively controlled 
by the user. Our system is also able to 
s e a m l e s s l y s w i t c h f r o m a n y g i v e n 
parametrisation to another at any time of the 
sequence, without having to wait until the end of 
the current sequence to do so. 

The work presented here is based on the 
assumption that the input 3D video sequences 
are aligned and contain similar actions. Future 
work wil l be focused on relaxing such 
assumptions and developing methods to 
automatically find mesh similarity between raw 
3D video sequences. We will also investigate the 
performance of the algorithm using real 3D video 
data captured in a multi camera studio, instead 
of synthetically generated 3D video sequences. 

walk

run

speed = f (α )
α = f −1(speed) = h(speed)



III: 4D motion parameterisation

Mesh sequence blending

(1) temporal alignment: dynamic time warp 

(II) blend corresponding frames

non-linear blending (Laplacian):   ~100ms/frame

linear blending: <8ms/frame but unrealistic

solution: hybrid non-linear blending 10ms/frame
[Casas et al. MIG‘11]
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Figure 3: Comparison of blending between two meshes (left, right) using linear (top row), non-linear(bottom row) and the
proposed real-time hybrid solution to non-linear mesh blending with one reference (2nd row) and three references (3rd row).
Heat-maps show errors vs. non-linear blending from dark-blue (zero) to red (maximum). The 2nd row shows that our hybrid
method with one reference gives a reasonable approximation to the non-linear result. (dataset courtesy [SP04])

w and performs a least-squares solution to obtain the re-

sulting mesh MNL(t,w). This non-linear operation can be

performed offline using existing approaches [KG08, Sor06,

SP04,XZY
∗

07], throughout this work we employ a volumet-

ric Laplacian deformation framework based on [Sor06].

Linear vertex blending gives an approximate mesh

ML(t,w) as a weighted sum of vertex positions: ML(t) =
1

∑ wi
∑wiMi(t), where wiMi(t) denotes the product of the

mesh vertex positions with weight wi. Given the non-

linear mesh deformation MNL(t,w) and linear approxi-

mation ML(t,w) we can evaluate a displacement field:

DNL(t,w) = MNL(t,w)−ML(t,w). The exact non-linear de-

formation for blend weights w can then be recovered by

linear interpolation together with a non-linear correction:

MNL(t,w) = ML(t,w) + DNL(t,w). Note that for blending

between mesh sequences of similar motions linear blend-

ing will give a reasonable approximation for large parts

of the surface DNL(t,w) ≈ 0, this allows efficient repre-

sentation of regions with significant non-linear deformation

DNL(t,w)> ε.

To accurately approximate the non-linear deformation for

blending a set of N reference meshes M with arbitrary

weights w we pre-compute the non-linear displacement field

DNL(t,w j) at a discrete set of intermediate weight values

w j to give an additional set of NNL reference meshes for in-

terpolation: M j(t,w j) = ML(t,w j)+DNL(t,w j). Real-time

online interpolation is then performed using a linear vertex

blending with the non-linear correction:

M(t,w) =
N+NNL

∑
j=1

g(w,w j)(ML(t,w j)+DNL(t,w j)) (1)

Method Max. Error Time
Linear 7.37 % 0.010 sec / frame
Hybrid 1 reference 1.72 % 0.012 sec / frame
Hybrid 3 references 0.58 % 0.015 sec / frame
Non-linear 0.00 % 0.780 sec / frame

Table 1: Maximum vertex displacement error with respect
to non-linear blending as a percentage of model size, and
computation time for 3000 vertex horse model in Figure 3.

where g(w,w j) is a weight function giving a linear blend of

the nearest pair of reference meshes for each weight wi ∈ w
and zero for all others. Equation 1 gives an exact solution

at the reference meshes and an interpolation of the near-

est reference meshes elsewhere. Recursive binary subdivi-

sion of the weight space w is performed to evaluate a set of

non-linearly interpolated reference meshes such that for all

w the approximation error |MNL(t,w)−M(t,w)| < ε. Typ-

ically for interpolation of mesh sequences representing re-

lated motions only a single subdivision is required.

This approach allows accurate approximation of non-

linear mesh deformation whilst maintaining the computa-

tional performance of linear blending to allow real-time in-

teractive animation. Figure 3 presents a comparison of er-

rors for linear and the proposed hybrid interpolation with

non-linear blending between two different poses. Table 1

presents quantitative results for error and CPU-time. This

shows that the proposed real-time hybrid non-linear mesh

blending approach achieves accurate approximation even

with a single intermediate non-linear displacement map (2nd

row) whereas linear blending results in large errors (top).

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)
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Figure 3: Comparison of blending between two meshes (left, right) using linear (top row), non-linear(bottom row) and the
proposed real-time hybrid solution to non-linear mesh blending with one reference (2nd row) and three references (3rd row).
Heat-maps show errors vs. non-linear blending from dark-blue (zero) to red (maximum). The 2nd row shows that our hybrid
method with one reference gives a reasonable approximation to the non-linear result. (dataset courtesy [SP04])

w and performs a least-squares solution to obtain the re-

sulting mesh MNL(t,w). This non-linear operation can be

performed offline using existing approaches [KG08, Sor06,

SP04,XZY
∗

07], throughout this work we employ a volumet-

ric Laplacian deformation framework based on [Sor06].

Linear vertex blending gives an approximate mesh

ML(t,w) as a weighted sum of vertex positions: ML(t) =
1

∑ wi
∑wiMi(t), where wiMi(t) denotes the product of the

mesh vertex positions with weight wi. Given the non-

linear mesh deformation MNL(t,w) and linear approxi-

mation ML(t,w) we can evaluate a displacement field:

DNL(t,w) = MNL(t,w)−ML(t,w). The exact non-linear de-

formation for blend weights w can then be recovered by

linear interpolation together with a non-linear correction:

MNL(t,w) = ML(t,w) + DNL(t,w). Note that for blending

between mesh sequences of similar motions linear blend-

ing will give a reasonable approximation for large parts

of the surface DNL(t,w) ≈ 0, this allows efficient repre-

sentation of regions with significant non-linear deformation

DNL(t,w)> ε.

To accurately approximate the non-linear deformation for

blending a set of N reference meshes M with arbitrary

weights w we pre-compute the non-linear displacement field

DNL(t,w j) at a discrete set of intermediate weight values

w j to give an additional set of NNL reference meshes for in-

terpolation: M j(t,w j) = ML(t,w j)+DNL(t,w j). Real-time

online interpolation is then performed using a linear vertex

blending with the non-linear correction:

M(t,w) =
N+NNL

∑
j=1

g(w,w j)(ML(t,w j)+DNL(t,w j)) (1)

Method Max. Error Time
Linear 7.37 % 0.010 sec / frame
Hybrid 1 reference 1.72 % 0.012 sec / frame
Hybrid 3 references 0.58 % 0.015 sec / frame
Non-linear 0.00 % 0.780 sec / frame

Table 1: Maximum vertex displacement error with respect
to non-linear blending as a percentage of model size, and
computation time for 3000 vertex horse model in Figure 3.

where g(w,w j) is a weight function giving a linear blend of

the nearest pair of reference meshes for each weight wi ∈ w
and zero for all others. Equation 1 gives an exact solution

at the reference meshes and an interpolation of the near-

est reference meshes elsewhere. Recursive binary subdivi-

sion of the weight space w is performed to evaluate a set of

non-linearly interpolated reference meshes such that for all

w the approximation error |MNL(t,w)−M(t,w)| < ε. Typ-

ically for interpolation of mesh sequences representing re-

lated motions only a single subdivision is required.

This approach allows accurate approximation of non-

linear mesh deformation whilst maintaining the computa-

tional performance of linear blending to allow real-time in-

teractive animation. Figure 3 presents a comparison of er-

rors for linear and the proposed hybrid interpolation with

non-linear blending between two different poses. Table 1

presents quantitative results for error and CPU-time. This

shows that the proposed real-time hybrid non-linear mesh

blending approach achieves accurate approximation even

with a single intermediate non-linear displacement map (2nd

row) whereas linear blending results in large errors (top).
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III: Interactive Animation

interactive motion transitions

skeletal motion graph [Gleicher’02,Arikan’02]

SUBMISSION ID: 153 / 4D Animation 3

Figure 1: Illustration of a 4D parametric motion graph
showing four nodes with parameterised motion spaces: walk
(top) parameterised for speed and direction; long-jump
(bottom-left) parameterised for length; jump-up (bottom-
middle) parameterised for height; and reach (bottom-right)
parameterised for hand location

The 4D parametric motion graph represents the set of

character motions and transitions which can be controlled

interactively at run-time from a 4D performance capture

database. Parameterised sets of motions form the graph

nodes each representing a distinct set of motions which

the character can perform with associated user-controlled

animation parameters. The problem is then to define the

graph edges which allow smooth transition between motions

at run-time whilst maintaining real-time interactive control

of the character motion. As in previous parametric motion

graphs based on skeletal motion [HG07] the parameter space

for each node is continuous and we cannot therefore pre-

compute all possible optimal transitions between parame-

terised motions. Figure 1 shows a simple 4D parametric mo-

tion graph with nodes for four motions: walk with parame-

ters for speed and direction; long-jump with parameters for

length; jump-up with parameters for height; and reach with

parameters for hand position. The arrows between nodes in-

dicate possible transitions and the arrows to the same node

indicate loops for cyclic motion.

3.1. Mesh Sequence Parameterisation

Interactive animation requires the combination of multiple

captured mesh sequences to allow continuous real-time con-

trol of movement with intuitive high-level parameters such

as speed and direction for walking or height and distance for

jumping. Methods for parameterisation of skeletal motion

capture have previously been introduced [KG04, RCB98,

MK05] based on linear interpolation of joint angles. Lin-

ear blending of meshes is computationally efficient but may

result in unrealistic deformation or mesh collapse if there

(a) walk-to-run motion parameterisation with speed

parameter from walk (green) to run (yellow)

(b) jump motion parameterisation with distance parameter

from short (red) to long (orange)

Figure 2: Examples of parameterised motions between two
motion sequences with continuous parameter variation (ev-
ery 5

th frame)

are significant differences in shape. Non-linear blending of

meshes produces superior deformation [KG08, Sor06, SP04,

XZY
∗

07] but commonly requires least-squares solution of a

system of equations which is prohibitive for real-time inter-

action.

Three steps are required to achieve high-level paramet-

ric control from mesh sequences: time-warping to align

the mesh sequences; non-linear mesh blending of the time-

warped sequences; and mapping from low level blending

weights to high-level parameters (speed, direction, etc.). In

this section we focus on real-time non-linear mesh blend-

ing which is the novel contribution of this work. As in pre-

vious work on skeletal motion parameterisation we assume

that individual mesh sequences Mi(t) are temporally aligned

by a continuous time-warp function t = f (ti) [BW95,WP95]

which aligns corresponding poses prior to blending such that

t ∈ [0,1] for all sequences.

3.1.1. Real-time non-linear mesh sequence blending

In this work we introduce a real-time approach to mesh

blending which exploits offline pre-computation of non-

linear deformation for a small set of intermediate parameter

values. Differences between the linear and non-linear mesh

deformation are pre-computed and used to correct errors in

linear deformation. This approach allows approximation of

the non-linear deformation to within a user-specified toler-

ance whilst allowing real-time computation with a similar

cost to linear blending. The price paid is a modest increase

in memory required to store intermediate non-linear mesh

displacements for blending.

Given a set of N temporally aligned mesh sequences

M = {Mi(t)}N
i=1

of the same or similar motions (e.g. walk

and run) we want to compute a blended mesh deformation

according to a set of weights w = {wi}N
i=1

: MNL(t,w) =
b(M,w), where b() is a non-linear blend function which in-

terpolates the rotation and change in shape independently

for each element on the mesh according to the weights

submitted to Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2011)

[Casas et al. 2011]

solution: 4D parametric motion graph

real-time transitions using shape similarity





Summary

Part I: Performance capture
3D video capture indoor/outdoor
joint segmentation & reconstruction

Part II: Structured representation
Global non-rigid alignment 
shape similarity tree
4D models

Part III: Interactive Animation
4D motion parametrisation 
4D parametric motion graphs

    



Future Challenges

Part I: Performance Capture
general dynamic scenes

Part II: Structured Representation 
Accurate alignment of non-rigid surface detail

Other Applications
performance analysis
real-time remoteinteraction

Part III: Interactive Animation
characters with highly dynamic clothing/hair
photo-realistic appearance
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