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Abstract 

 
The growing application of collaborative 

technologies to C4ISR greatly increases 
communication and coordination, but poses a hidden 
threat. When the same set of people interact frequently 
with one another, they grow to think more and more 
along the same lines, a phenomenon we call 
“collective cognitive convergence” (C3). The higher 
the collaborative bandwidth, the faster this 
convergence, and the greater the danger that the 
group will collapse prematurely to a single 
perspective, becoming blind to strategic alternatives. 
We review previous work in sociology, computational 
social science, and evolutionary biology that sheds 
light on C3; define a computational model for the 
convergence process and quantitative metrics that can 
be used to study it; report on experiments with this 
model and metric; and suggest how the insights from 
this model can inspire techniques for managing C3  in 
C4ISR.  

 
1. Introduction 
 
When the same set of people interact frequently, 

they grow to think more and more along the same 
lines. We call this phenomenon “collective cognitive 
convergence”, since the dynamics of the collective 
lead to a convergence in cognitive orientation.  

Cognitive convergence arises in many contexts, 
including research subdisciplines, political and 
religious associations, and even persistent adversarial 
configurations such as the cold war. Tools that support 
collaboration, such as blogging, wikis, and communal 
tagging, make it easier for people to find and interact 
with others who share their views, and thus may 
accelerate convergence. This efficiency is sometimes 
desirable, since it enables a group to reach consensus 

more quickly. For instance, in the academy, it enables 
coordinated research efforts that accelerate the growth 
of knowledge.  

But convergence can go too far, and lead to 
collapse. It reduces the diversity of concepts to which 
the group is exposed and thus leaves the group 
vulnerable to unexpected changes in the environment. 
Here are three examples. 
• In academia, specialized tracks at conferences 

sometimes become unintelligible to those who are 
not specialists in the subject of a particular track, and 
papers that do not fit neatly into one or another 
subdiscipline face difficulty being accepted. The 
subdiscipline is increasingly sustained more by its 
own interests than by the contributions it can make 
to the broader research community or to society at 
large.1  

• In military operations, the force-on-force orientation 
developed during the Cold War left both the former 
Soviet Union and NATO ill-prepared to deal with 
insurgencies and asymmetric warfare.  

• Students of intelligence analysis have long 
recognized the danger of premature hypothesis 
convergence [14], which can blind analysts to 
strategic alternatives. 
Groups that have undergone cognitive collapse will 

only produce output conforming to their converged set 
of ideas, and will be unable to conceive or explore new 
ideas. In the worst case, collapse may lead a group to 
focus its attention on a cognitive construct with little or 
no relation to the real world. For example, highly 

                                                           
1 This paper was motivated by frustration voiced in the industry track 

at AAMAS07 about how some subdisciplines of agent research 
were becoming so intellectually ingrown, focusing only on 
problems defined by other members of the subdiscipline, that it 
was difficult or impossible to apply them to real problems. 



specialized academic disciplines 
become increasingly irrelevant to 
people outside of their own circle. 

We became interested in this 
phenomenon by observing increasing 
balkanization in the research field of 
multi-agent systems. Since we work 
in the area of multi-agent simulation, 
it occurred to us that some light might 
be shed on the phenomenon, and on 
how it can be managed, with a multi-
agent model. This paper presents 
some preliminary results. 

Section 2 discusses previous work 
related to our effort. Section 3 describes our model, 
and a metric that we use to quantify convergence. 
Section 4 outlines a series of experiments that exhibit 
the phenomenon and explore possible techniques for 
managing it. Section 5 suggests directions for further 
research, and Section 6 concludes. 

 
2. Previous Work 
 
Our research on collective cognitive convergence 

builds on previous work in sociology (both empirical 
and theoretical) and evolutionary biology. 

There is abundant empirical evidence that groups of 
people who interact regularly with one another tend to 
converge cognitively. Sunstein [25] draws attention to 
one version of this phenomenon, “group polarization”: 
a group with a slight tendency toward one position will 
become more extreme through interaction. This 
dynamic suggests that confidence in group deliberation 
as a way of reaching a moderating position may be 
misplaced. He summarizes many earlier studies, and 
attributes the phenomenon to two main drivers: social 
pressure to conform, and the limited knowledge in a 
delimited group. Our model captures the second of 
these drivers, but not the first. Sunstein suggests some 
ways of ameliorating the problem that we explore with 
our model. 

Computational social science has long been 
preoccupied with the dynamics of consensus 
formation. One recent review [13] traces relevant work 
back more than 50 years [10]. These studies include 
analysis, simulation, or sometimes both. Their models 
differ along several important dimensions, including 
include the belief model and three characteristics of 

                                                           
2 [9] finds faster convergence when some elements in the vector 

function as interval variables. 
3 All entries reflect the same belief in different behavioral settings, 

and pressure toward internal consistency is part of the model 
dynamics. 

agent interaction (topology, arity, and preference). 
Rather than attempting an exhaustive review, we 
situate our work in these dimensions. 
• The model of an agent’s belief can be either a single 

variable or a vector, with values that can be real, 
binary, or nominal. Vector models usually represent 
a collection of beliefs, but in one study [3] the 
different entries in the vector represent the value of 
the same belief that underlies different behaviors, to 
explore of internal consistency.  

• In some models agent interactions are constrained by 
agent location in an incomplete graph, usually a 
lattice (though one study [18] considers scale-free 
networks). In others any agents can interact (often 
called the “random choice” model). 

• Agents to interact only two at a time, or as larger 
groups. 

• The likelihood of agent interaction may be 
modulated by their similarity. 
Table 1 characterizes several papers in this area in 

terms of these dimensions. Our work represents a 
unique combination of these characteristics. In 
particular, 
• We consider a vector of m beliefs, rather than a 

single belief. This model allows us to look at how an 
individual may participate in different interest 
groups based on different interests, but also makes 
describing the dynamics much more difficult than 
with a single real-valued variable. In the latter case, 
individuals move along a linear continuum, and 
measures such as the mean and variance of their 
position are suitable metrics of the system’s state. In 
our case, they live on the Boolean lattice {0,1}m of 
interests, and our measures must reflect the structure 
of this lattice.  

• We allow many individuals to interact at the same 
time. This convention captures the dynamics of 
group interaction more accurately than does pairwise 
interaction, but also means that our agents interact 
with a probability distribution over the belief vector 

Table 1: Representative Studies in Consensus Formation 

Study Belief Topolog
y Arity Preference? 

Krause [17] Real variable Random Many Yes 
Sznajd-Weron 
[26] Binary variable Lattice Two No 

Real variable Random Two Yes Deffuant [6] Binary vector Random Two Yes 

Axelrod [2] Nominal2 
vector Lattice Two Yes 

Bednar [3] Nominal 
vector3 Random Many No 

This paper Binary vector Random Many Yes 



rather than a single selection from such a 
distribution. 

• We allow our agents to modulate the likelihood of 
interaction based on how similar they are to their 
interaction partners. This kind of interest-based 
selection is critical to the dynamics of interest to us, 
but makes the system much more complex. 
One consequence of selecting the more complicated 

options along these dimensions is that analytic results, 
accessible with some (but by no means all) simpler 
models, become elusive. Almost all analytical results 
in this discipline are achieved by modeling the belief 
of agent i as a single real number xi and studying the 
evolution of the vector x over time as a function of the 
row-stochastic matrix A whose elements aij indicate 
the weight assigned by agent i to agent j’s belief, 
x(t+1) = Ax(t). This model captures interaction arity 
greater than two, but not vector beliefs or agent 
preferences. Conditions for convergence under 
preferences have been obtained [17], but only for six 
or fewer agents [13]. Bednar et al. [3] have derived 
convergence times for a form of vector belief, but only 
for binary interactions and with no preferences. Even 
for binary interactions, the combination of vector-
based beliefs and preferences has resisted analytical 
treatment (in studies of an isomorphic system, bisexual 
preferential mating [15, 22]). 

Given this research context, in this paper we focus 
our attention on simulation results, to develop 
intuitions that may reward future analytical 
exploration. 

The subgroups that form and cease to interact when 
convergence turns to collapse are reminiscent of 
biological species, which do not interbreed. So we 
look for insight to research in the field of biological 
speciation (see [5, 11] for reviews). The most 
commonly proposed speciation mechanisms are 
allopatric speciation, sympatric speciation, and 
parapatric speciation. In allopatric speciation, genetic 
barriers gradually evolve between two or more 
geographically isolated species. This might happen for 
instance between organisms living on separate islands. 
These barriers could evolve either through natural 
selection or through other means such as the founder 
effect (i.e., differences in genes between populations 
due to the small sample sizes of the founding 
populations). One configuration of our model can be 
interpreted as exhibiting allopatric speciation.  

In parapatric speciation, there is no discrete barrier 
between populations; individuals are distributed along 
a geographic continuum and are separated by distance. 
Finally, sympatric speciation refers to instances where 
a single population with no physical or geographic 
gene flow barriers divides into separate species. Two 

interacting forces are required for sympatric speciation 
to occur: 1) a force that drives sympatric speciation 
(e.g. resource competition or sexual selection) and 2) 
assortative mating that generates phenotypic variability 
and maintains evolving phenotypic clusters that 
eventually become species. Assortative mating refers 
to a mating system where different individuals express 
preferences for different phenotypes (e.g. some female 
birds prefer males with red feathers and other females 
prefer males with blue feathers). Some configurations 
of our model correspond to sympatric speciation. 

Sexual selection [1, 8] roughly refers to the 
differential mating success of individuals in a 
population, Sexual selection can either be based on an 
asymmetric mating system (males compete and 
females choose) or a symmetric mating system (mutual 
mate choice where both sexes compete and choose). 
One sexual selection mechanism is Fisher’s runaway 
process, which leads to extravagant traits in males that 
are detrimental to their survival. 

While the relative importance and frequency of 
these speciation mechanisms in nature are still heavily 
debated, the mathematical prerequisites for each 
mechanism have been extensively studied [5, 11, 16]. 
This work could be adapted to predict when and how 
collectives will converge cognitively, and how 
convergence can be managed. 

Our model can be considered an instance of a 
runaway sexual selection speciation model with mutual 
mate choice. We assume a homogenous environment, 
no physical barriers for the exchange of ideas and a 
symmetric “mating system” where individuals express 
their “mating preferences” (i.e. their preference for an 
atomic interest; see Section 3 below) mutually. In our 
model, a preference for extreme traits is modeled as 
the probability of adopting an interest based on the 
prevalence of this interest in a given neighborhood. A 
successful runaway process in our model can be 
viewed as the development of academic specializations 
with little practical relevance.  

There has also been much theoretical work done to 
study the amount of gene flow or migration that is 
necessary to prevent isolated populations of organisms 
from diverging or losing diversity due to genetic drift, 
or sampling error [12]. Sewall Wright argued in his 
Shifting Balance Theory that a subdivided population 
with intermittent migration could exhibit more rapid 
evolutionary change than a single cohesive breeding 
population [23]. The mathematical frameworks for 
studying migration could be applied to modeling the 
exchange of ideas or individuals between groups, and 
the amount of exchange that is necessary to prevent 
intellectual isolation.  

 



3. A Model and Metrics 
 
We have constructed a simple multi-agent model of 

collective cognitive convergence to study this 
phenomenon. Our model represents each participant’s 
interests as a binary vector. Each position in the vector 
corresponds to an atomic interest. A ‘1’ at a position 
means that the participant is interested in that topic, 
while a ‘0’ indicates a lack of interest. At each step, 
each participant 
• identifies a neighborhood of other participants based 

on some criteria (which may include proximity 
between their interest vectors, geographical 
proximity, or proximity in a social network, criteria 
that correspond to differences among various forms 
of biological speciation), 

• learns from this neighborhood (by changing an 
interest j currently at 0 to 1 with probability pinterest = 
proportion of neighbors having interest j set to 1), 
and  

• forgets (by turning off an interest j currently at 1 to 0 
with probability 1 – pinterest). 
One boundary condition requires attention. If an 

agent has no neighbors, what should pinterest be? We 
take the view that interests are fundamentally social 
constructs, persisting only when 
maintained. Thus an isolated agent will 
eventually lose interest in everything, and 
in our model, a null community leads to 
pinterest = 0 for all interests. Alternative 
assumptions are certainly possible, and 
would lead to a different model. 

We need quantitative measures of 
agent convergence to study convergence 
systematically. (Sophisticated statistical 
techniques exist for estimating the 
consensus of a group of people 
empirically, based on their responses to 
questionnaires [24]. For our purposes, the 
abstract measures here are more suitable.) 
To derive our measures, we cluster the 
population hierarchically based on 
cognitive distance between agents (in our 
case, the Jaccard distance between their 
interest vectors). Each node of the 
resulting cladogram forms at a specific 
distance (the “diameter” of the cluster 
represented by that node). The root has the 
highest diameter. In a random population 
of agents, the distances at which lower-
level nodes join the tree is not much less 
than the diameter of the root (Figure 1), 
while in highly converged populations, the 

diameters of lower-level nodes are much less than the 
diameter at the root (Figure 2, where agents grouped at 
diameter 0 have identical interest vectors). Thus we 
compute the ratio of node diameter to root diameter 
(the “min-max ratio”) for each node, and use the 
median of this ratio as a measure of overall system 
convergence. A ratio of 0 (as in Figure 1) means that 
more than half of the agents belong to groups within 
which all interest vectors are identical.  

Figure 3 shows the behavior of the min-max ratio 
over a sample run of the system with 20 agents and 
interest vectors of length 10, where the probability of 
learning and forgetting is equal, and where agents are 
considered to be in the same group if the similarity 
between their interest vectors (the similarity threshold) 
is greater than 0.5. It takes only about 80 generations 
for the median min-max ratio to reach 0. (A generation 
consists of selecting one agent, choosing its neighbors, 
choosing with equal probability whether it shall 
attempt to learn or forget, selecting a bit in its interest 
string at random, then if it is learning and the bit is 0, 
flipping the bit with probability plearn * pinterest, or if it is 
forgetting and the bit is on, flipping the bit with 
probability pforget * (1 pinterest.)) Figure 2 shows the state 
of this system at generation 300. By generation 370 it 
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Figure 1 Random interest vectors, median min-max ratio = 0.583.  
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Figure 2 A highly converged population, median min-max ratio = 0 



has collapsed into two groups of 
completely homogeneous agents of sizes 3 
and 17 respectively.  

 
4. Some Experiments 
 
Armed with this model and metric, we 

can explore the dynamics of collective 
cognitive convergence under a variety of 
circumstances. As we might expect, 
forming neighborhoods based on 
similarity of interest leads to rapid 
cognitive convergence. But surprisingly, 
other sorts of neighborhoods also lead to 
convergence. 

 
4.1. Things that Don’t Work 

 
We might think that highly tolerant 

agents, those that consider all agents their 
neighbors, might be more robust to 
convergence. Figure 4 shows the 
evolution of the same population of agents 
when two agents consider one another 
neighbors if their similarity is greater than 
0 (that is, they have at least one bit 
position in common). This configuration 
might be a model for a loosely organized 
analytic community in which any analyst 
can interact with any other. The 
population still collapses. 

Perhaps the problem is that as agents 
converge, their neighborhoods increase in 
size. Figure 5 shows the effect of defining 
an agent’s neighborhood at each turn as 
the group of four other agents that are 
closest to it. This configuration models an 
organization with highly specialized 
departments. Biologically, it corresponds 
to sympatric speciation: the assortative 
component is provided by the preference 
for partners with similar interests, while 
the limit on group size provides pressure 
toward diversity. Though agents base their 
adaptation at each turn on only 20% of the 
other agents, the min-max ratio still goes 
to zero, as agents form subgroups within 
which interests collapse. As in Figure 3, 
the selection of partners by interest 
proximity means that agents never interact 
with those who differ with themselves. 

Figure 6 shows an even more radical 
approach. Here an agent’s neighbors at 
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Figure 3 Evolution of 20 agents with length-10 interest vectors, 
neighborhoods defined by similarity > 0.5 
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Figure 4: Zero Threshold 
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Figure 5 Fixed-size agent neighborhoods (four closest agents) 



each step are four randomly chosen 
agents. Imagine organizing an intelligence 
agency by assigning agents to 
departments, not by tasking, but randomly. 
In spite of the mixing that this random 
selection provides, the population again 
collapses.  

These examples differ in how long it 
takes the system to converge to a min-max 
ratio of 0. The time to convergence is 
highly variable, even within a single 
configuration. Repeated runs show that we 
should not assume that because (say) 
Figure 5 converges faster than Figure 4, 
small groups will always lead to faster 
convergence than highly tolerant agents. 
The one constant across all runs is that the 
system does converge, in fewer than 500 
generations (often far fewer).  

 
4.2. Introducing Variation 
 
The collapse of agent interests is abetted by the lack 

of any mechanism for introducing variation. Once the 
population loses the variation among agents, it cannot 
regain it. We have explored three mechanisms for 
adding variation to the population: random mutation, 
curmudgeons, and interacting subpopulations. 

The simplest approach is mutation. At each 
generation, with some small probability pmutate, after 
learning or forgetting, the active agent selects a bit at 
random and flips it. This mechanism models 
spontaneous curiosity on the part of agents. Figure 7 
shows an extended run with parameters the same as in 
Figure 3 (neighborhoods defined by a similarity 
threshold of 0.5), but with pmutate = 0.03. Mutation is 
certainly able to reintroduce variation, but the level is 
critical. If mutation is too low (say, 1%), it 
is unable to keep up with the pressure to 
convergence, while if it is too high (10%), 
the community does not exhibit any 
convergence at all (and in effect ceases to 
be a community). The nature of its 
contribution follows a clear pattern. When 
it is in the critical range, the system 
occasionally collapses to a min-max ratio 
of 0, but then discovers new ideas that 
reinvigorate it. The population diameter 
under mutation converges to 1, since even 
when mutation is too low to avoid collapse 
within groups, it can introduce new 
interest vectors that are orthogonal to the 
converged groups. 

A curmudgeon is a non-conformist, someone who 
regularly questions the group’s norms and 
assumptions. Sunstein [25] observes that “group 
members with extreme positions generally change little 
as a result of discussion,” and serve to restrain the 
polarization of the group as a whole. 

To model curmudgeons, recall that ordinarily agents 
learn by flipping a 0 bit to 1 with probability pinterest, 
the proportion of neighbors that have the bit on, and 
forget by flipping a 1 bit with probability equal to 1 – 
pinterest. To model curmudgeons, when an agent decides 
to learn or forget, with probability pcur,, it reverses 
these probabilities. That is, its probability of forgetting 
when it is curmudgeonly is pinterest (instead of 1 - pinterest 
in the non-curmudgeonly state), and its probability of 
learning is 1 – pinterest.  

Figure 8 shows the effect of 10% curmudgeons, 
again with the baseline configuration of Figure 3. The 
system clearly converges, but seldom reaches a min-
max ratio of 0. Furthermore, pcur can achieve this 
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Figure 6 Neighborhoods of four randomly-chosen agents 
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Figure 7 Adding 3% mutation 



balancing effect over a much wider range 
than pmutate. The population diameter tends 
to 1, reflecting the addition of diversity. 
As much as researchers may resent 
reviewers and discussants who “just don’t 
get it,” curmudgeons are an effective and 
robust way of keeping a community from 
collapsing. 

The third source of variation is even 
more robust, and somewhat surprising, as 
the source of variation is endogenous 
rather than exogenous. So far, our agents 
have chosen a new set of neighbors at 
every step, based on their current set of 
interests. What would happen if we assign 
each agent to a fixed group at the outset, 
using a fixed similarity threshold that 
allows groups of various sizes to form?  

The behavior depends on the structure 
of the graph induced by a given threshold. 
Figure 9 shows how the number of 
components depends on the threshold for 
groups formed in populations of 20 agents 
with 10 interests each. The sudden shift 
from many components at 0.6 to a few at 
0.55 is an instance of the well-known 
phase transition in random graphs in which 
a giant connected component emerges as 
the number of links increases [7], in this 
case as a result of lowering the threshold. 
Four cases merit our attention. 

If the threshold is very high, there are 
20 components, one for each agent. With 
no neighbors to reinforce its interests, each 
agent will begin to forget them, and the 
agents will independently approach the 
fixed point of an all-zero interest string. 

If the threshold is very low, all agents will form one 
large group, and converge as in Figure 4.  

At intermediate thresholds above the phase shift, 
the agents clump into small disjoint components. For 
example, one run at threshold 0.7 yielded two groups 
of size 3, three of size two, and eight of size one. Each 
of these groups evolves independently, yielding high 
diversity among groups (population diameter 1) but 
collapse within groups (min-max ratio of 0). This 
model corresponds to the biological concept of 
allopatric speciation, in which physical separation 
allows groups to evolve separately. 

For intermediate thresholds below the phase shift, 
the agents form a number of neighborhoods, but some 
agents (“bridging agents”) belong to more than one 
neighborhood. Figure 10 is a graph of one such case 
with threshold 0.5, with an edge between two agents if 
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Figure 8 10% curmudgeons 
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Figure 9: Number of components as function of threshold: 20 agents, 10 
interests. 
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Figure 10 Neighborhood relations for threshold of 0.5 



the similarity between those agents is greater than the 
threshold. Because neighborhoods are fixed over the 
run, each neighborhood can converge relatively 
independently of the others, but the bridging agents (in 
this case, for example, agent 20) repeatedly displace 
each neighborhood’s equilibrium with the emerging 
equilibrium of another group. Convergence within 
local neighborhoods provides the source of diversity 
that, mediated by bridging agents, keeps nearby 
neighborhoods from collapsing. Page [19] discusses 
the potential for such dynamics, and the model of 
Bednar et al. [3] can be aligned with this result by 
drawing on their observation that the pressure to 
internal consistency for a single agent is formally 
equivalent to the pressure to conformity among a 
group of agents.  

The result of this interplay of separate but linked 
groups is convergence without collapse (Figure 11). 
This mechanism, like curmudgeons and unlike 
mutation, provides robustness against intermittent 
collapse. It reflects a community with subdisciplines, 
but subdisciplines that recognize the value of members 
who bridge with other subdisciplines and exchange 
ideas between them. Such members are likely to be 
tolerated better by subgroups than would 
curmudgeons, because the source of the variation 
introduced by the bridging individuals is perceived as 
resulting from their multidisciplinary orientation rather 
than their orneriness. The population diameter under 
fixed groups tends to 1. 

This last mechanism is related to Sunstein’s 
observation that polarization is more likely if people 
feel strong solidarity with their group. By definition, 
bridging individuals are part of multiple groups. They 
are inherently less identified with any one group, and 
thus unlikely to be drawn completely into the group 
consensus. As a result, they can keep the 
group leavened with new ideas, protecting 
against collapse. 

 
5. Directions for Future Work 
 
Our simple model has shown a 

surprisingly rich space of behaviors. These 
insights suggest new directions for both 
research and application. From an 
applications perspective, organizational as 
well as technical recommendations suggest 
themselves. 

 
5.1. Research Directions 
 

An analytical model of C3, along the lines of our 
previous work on convergence of multi-agent systems 
[21], would be valuable for suggesting additional 
mechanisms for monitoring and avoiding collapse. 
Existing work on the mathematics of biological 
speciation offers a promising foundation for this 
analysis. 

How can convergence be monitored in practice? 
Our metric, while effective for simulation, is 
impractical for monitoring actual groups of people. 
Explicit questionnaires [24] are appropriate for 
experimental setting but cumbersome in monitoring 
groups “in the wild.” One might monitor the amount of 
jargon that a group uses, or lack of innovation, as 
indicators of convergence. A promising example of 
initial work in this area is Schemer [4].  

We have suggested that convergence is a two-edged 
sword. What is the ideal degree of convergence, to 
allow the production of specialist knowledge without 
compromising the ability to escape collapse? 

How does convergence vary with group size? 
Recent work [20] suggests that convergence in small 
groups requires specialized knowledge, while 
convergence in large groups requires a general 
knowledge base. 

We have assumed homogeneous tendencies to 
learn, forget, mutate, or behave curmudgeonly over all 
agents. How does the system respond if agents vary on 
these parameters? In particular, what is the impact of 
these parameters for bridging individuals in 
comparison with non-bridging individuals? 

 
5.2. Application Directions: Organization 
 
Our model suggests that certain organizational 

practices can foster or frustrate cognitive collapse. 
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Figure 11 Fixed neighborhoods induced by threshold 0.5 



Consider a team of analysts searching for information. 
Management may have considerable influence in 
forming the team, and the actions available for 
managing C3 reflect this influence. For example, 
• If a group’s searches are sparsely distributed in 

search space, guide more analysts to join this group 
to cover more areas in this search space. 

• If a group’s searches are not specific enough, 
promote the splitting of groups to create smaller, 
specialist groups (for example, by introducing 
specialists). 

• If a certain convergence threshold is reached 
(perhaps because the search space has been 
exhausted), introduce a curmudgeon to guide the 
group into a new area of the search space. 

• If in a group only a few individuals drive 
convergence, encourage less active individuals to 
participate more. 

• If in a group the majority of people prevent the 
exploration of novel areas in search space, 
artificially encourage these people to be more 
adventurous. 
 
5.3. Application Directions: Technical 
 
The organizational recommendations in the 

previous section all presume that an organization has 
available a “convergence meter” that can be used to 
detect the degree to which a group is converged and 
the direction and rate of change in its convergence. 
Our ongoing research focuses on ways to derive such a 
measure from passive observations of peoples’ 
interactions in computer-aided collaborative tools such 
as Wikis, email, tagging, and blogging.  

For example, we can discover different groups of 
people based on their participation in various 
collaboration tools.  
• The addressees in an email correspondence are 

defined explicitly by the participants. 
• The people who edit a Wiki page or comment on a 

blog are visible to one another, but the group is less 
rigid and more open than an email discussion group. 

• Tagging is perhaps the least constrained mechanism. 
While tagging environments typically permit people 
to find others who use an individual tag, patterns of 
tags define virtual groups whose members may not 
explicitly know one another. 
The field of “user modeling”4 has developed a 

range of techniques to induce a person’s interests and 
intentions from her actions in a software environment. 
Applying these techniques to the members of these 

                                                           
4 For a convenient summary, see http://www.um.org  

various groups can show us (among other things) the 
degree of convergence of each group, the susceptibility 
of various members to new ideas, and candidates for 
the “curmudgeon” role in a collapsing group (e.g., 
someone who participates with many members of the 
collapsing group in a more open environment such as 
tagging, but who is not currently involved in the 
environment where the group is currently showing 
collapse, such as email).  

In addition to a passive role in providing data to 
guide management decisions, these collaborative tools 
have the potential to influence cognitive convergence 
actively. This potential needs to be assessed through 
controlled experiments, but one can hypothesize some 
promising techniques. Here is an example of one way 
that such mechanisms might work. 

An appropriately configured set of tools could 
leverage intersections among these groups. Monitoring 
of email traffic might show a strong convergence 
among a particular group of correspondents, while 
monitoring of all of the tools might identify people not 
currently in the group who could add needed diversity. 
Culturally, it would not be acceptable for the system to 
forward some of the emails to the potential newcomers 
to involve them in the collapsing discussion. But the 
system could find Wiki pages or blogs whose 
participants include a large proportion of the 
converging group, and suggest to the potential 
newcomers that they visit and comment on those sites. 
The anticipated result is that the less formal groups 
might provide a channel for the newcomer’s ideas to 
move into the more rigid settings and counteract the 
premature convergence that has been detected.  
 

6. Conclusion 
 
It is natural for groups of people to converge 

cognitively. This convergence facilitates mutual 
understanding and coordination, but if left unchecked 
can lead the group to collapse cognitively, becoming 
blind to viewpoints other than their own. Experiments 
with a simple agent-based model of this phenomenon 
show that seemingly obvious mechanisms do not check 
this tendency. A source of variation must be 
introduced to counteract the natural tendency to 
converge. Mutation is effective if just the right amount 
is applied, but tends to let the system intermittently 
collapse. Curmudgeons are more robust, but socially 
distasteful. Perhaps the most desirable mechanism 
consists of bridge individuals who provide interaction 
between individually converging subpopulations. 
These individuals arise when groups are well-defined, 



but have thresholds for participation low enough that 
some individuals can participate in multiple groups.  

The rapid proliferation of collaborative tools, such 
as email, Wikis, tagging, and blogging, poses a serious 
threat of accelerating cognitive collapse. At the same 
time, these tools provide a wealth of user data that, if 
analyzed appropriately, could reveal incipient collapse. 
In addition, these tools could be configured to identify 
people who could inject needed diversity into a 
collapsing group and guide them into the discussion.  
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