

Computer Network Defense: Compromise Detection Prototype

Carl Beisel, Jim Jones, Christian livari

The Problem

Zero Day Attacks:

— How and when does a novel, previously unknown attack first get discovered? Can that attack be detected and stopped before affected systems are compromised and exploited?

Problem:

 Signature based detection patterns are based on having discovered, evaluated and defined patterns for the attack. Behavior based detection has high false positives.

Approach:

- Non-signature, non-behavior based detection
- Attack Modeling: reason over observables (indicators, anomalies, second-order effects, etc.)

Technical Approach

- Perform Deep Packet Inspection of network traffic and capture of packets of interest matching one of our 16+ observable rules
 - Observables represent pieces of evidence relevant to the activities an attacker may perform during an attack as represented by the following transition states:
 - Vulnerability Research
 - Exploit Development and Testing
 - Reconnaissance
 - Exploit Execution
 - Cleaning Activities
 - Back Door Installation
 - Outputs observables for analysis by the reasoning model

- Use Bayesian Network model to accumulate and assess evidence and calculate the likelihood of a successful attack (i.e., a compromise).
- Provide graphical output to a user indicating the likelihood of an attack.
 - Graphical depiction of analysis and calculated 'Likelihood of System Compromise'
 - Can be enhanced to interface with widely used network monitoring and alert tools.

Architecture - Inspect, Analysis, Report, Protect

Zero Day Attack Identification and Cyber Defense

Experimental Environment

Virtual Machine Configuration: Four VMs to monitor and analyze network traffic, attacker and victim.

- SNORT Monitor (Backtrack 5.0 on Ubuntu Linux):
 - Snort IDS (Live monitoring)
- Zero Day Attack Monitor (Ubuntu Linux):
 - Capture Tool (LibPCAP)
 - HyReM Zero Day Attack Analysis/GUI (Demo)
- Attacker (Backtrack 5.0 on Ubuntu Linux):
 - Attacks (Metasploit, Minishare)
- Victim (Win XP SP1 a, has numerous vulnerabilities):
 - Clean snapshot re-instated after each experiment

Experiment Results

One result per test.

WReM

										
Test #	Pcap File	Pcap Packet Cnt	Description	Obs File	Total Obs Cnt	Likelihood of Compromise	Snort Alerts	Priority 1	Priority 2	Priority 3
1	1.pcap	2179	Metasploit exploit ms04-011	1_obs.pcap	89	0.9740	13	2	8	3
2	2.pcap	2588	Metasploit exploit ms03-026	2_obs.pcap	105	0.9905	12	2	8	2
3	3.рсар	2420	Metasploit exploit ms08-067	3_obs.pcap	102	0.9742	12	2	8	2
4	4.рсар	1669	Minishare - noisy	4_obs.pcap	90	0.9753	13	2	8	3
5	5.pcap	1642	Minishare - moderate	5_obs.pcap	103	0.9752	10	2	6	2
6	87.pcap	311+5339	Minishare - quiet	8_obs.pcap	6	0.7803	0	0	0	0
7	6.рсар	325	Clean 1	6_obs.pcap	2	0.0141	0	0	0	0
8	7.рсар	5339	Clean 2	7_obs.pcap	0	0.0100	5	0	5	0
9	14.pcap	3848	Chronological merge of files 1 and 4	14_obs.pcap	131	0.9970	23	4	16	3
10	26.pcap	2913	Chronological merge of files 2 and 6	26_obs.pcap	108	0.9915	12	2	8	2
11	46.pcap	1994	Chronological merge of files 4 and 6	46_obs.pcap	92	0.9792	13	2	8	3
12	57.pcap	6981	Chronological merge of files 5 and 7	57_obs.pcap	128	0.9752	15	2	11	2
13	347.pcap	9428	Chronological merge of files 3, 4, and 7	347 obs.pgap	219	0.9970	31	4	21	6

Noisy Attack

Quiet Attack

Clean

False Positive

Our approach found an attack that the standard toolset missed

Test Environment – Optimal Configuration

- 1a/b Document Capture & HyReM Results
- 2 Compare with Snort Alerting
- 3 Inject Cyber Attacks
- 4 Inject Live/Simulated
 Network Data Flow

Compromise Model and Observables

Observable Modeling

