

0

Dr. Krishna Kant

Center for Secure Information Systems George Mason University

Cloud Computing Proliferation

- Strong momentum towards clouds
 - High infrastructure mgmt costs (up to 70%)
 - Low infra. utilization (10-15% typically)
 - Inflexibility matching capacity & capabilities to demand
- Rapid proliferation
 - Federal cloud computing strategy
 - Expanding offerings by vendors
 - But many concerns ...

What's Unique about Clouds?

- Old technologies mostly
 - Virtualization, consolidation, distributed computing, ...
- New Twist: Un-owned infrastructure

5/21/12 Challenges in Cloud Computing Security

Major Cloud Issues

- Introduces at least one new party
 - Security, privacy & trust between parties
 - Lack of control availability, performance, compatibility, involuntary sharing, etc.
- Customer concern
 - Security & privacy of data, attack resistance, ...
 - Interference from other customers
- Operator concern
 - Ability to meet SLA requirements
 - Protection of customers from one another & hackers.

Survey of Issues

- Degree of business risk for movement to cloud:
 - I: Minimal, 3: Moderate, 5: Very serious
- Security biggest issue, but not the only one

Percentage of respondents who indicated a 4 or 5

Data security Data and systems integration Data and system portability Viability of third-party providers IT governance Service level agreements

From PricewaterhouseCoopers LLP www.pwc.com

Trust in Cloud Computing

- Requires new trust relationships
 - Between customer & infra. provider (IP)
 - Vertically & horizontally between IPs.
- Security & Privacy Issues
 - Requirements, Enforcement & performance
 - Impact of multiple infra. provider layers (vertical)
 - Coordination among multiple providers (horizontal)

Security vs.Visibility

- Multiple service models
 - SaaS:Very little visibility
 - SW deployment under control of IP, quite safe
 - PaaS :
 - Allows users to install malicious or disruptive SW.
 - SW may attempt to hog resources
 - laaS: Complete visibility
 - Users can change drivers, VMs, even VMM, etc.
- Challenges
 - Detection of malicious SW and protection against such SW

Cloud Based Attacks

- Could deploy applications in cloud to
 - Silently monitor activity to grab sensitive information
 - Build private copy of databases via widespread active querying.
 - Disrupt normal operation via excessive computing/ comm. load, traffic misdirection, DNS poisoning, etc.

Challenges

- How do you identify such rogue deployments?
- At the source (different from intrusion detection)
- HW support?

Sharing Between Untrusted Parties

- Enterprise Computing on the Clouds
 - Infrastructure shared by businesses that may be competitors
 - Strong incentive to monitor competitor's workload
- Exploit shared environment
 - Obtain disproportionate use of resources at the expense of others
 - Resource consumption attacks
 - Possibly energy mgmt related attacks

Configuration Management

- Cloud config. mgmt very complex
 - Dynamic resource allocation over distributed infrastructure
 - Limited visibility across layers (vertically & horizontally).
 - But, intelligent config. mgmt requires fusion of information from multiple sources
- Attack on config mgmt databases can disable or disrupt the entire cloud
- How do you make config. mgmt robust to attacks?

Using Clouds for Security

- Scattering data in the cloud
 - Make it difficult to obtain data & relationships in one place.
 - The scatter map needs to be secured.
 - Conflict between performance & security/privacy.
 - HW support?
- Migration to defeat reconnaissance
 - A form of moving target defense

Collaborative Computing

Model

- Multiple enterprises that need to collaborate to provide a service (e.g., e-commerce)
- Mutually agreed data access rules
 - E.g., Relational data model w/ access over "join paths"
- Enterprises may be hosted on cloud infrastructure
 - E.g., Using laaS or PaaS model.

Problem

- Ensure consistency of rules
- Efficiently authorize and implement queries

Why is this Hard?

- Problem complex because of complex rules
 - E2 can see $(R_{11} \Diamond R_{32})$ projected over attributes (A_1, A_3)
 - E2 can't see relations R₁₁ & R₃₂ individually
 - May be unclear who computes $(R_{11} \Diamond R_{32})$ and where.

Basic Research Questions

Consistency

- Mutual consistency between rules (relevant w/ deny rules)
- Consistency against given policies (not considered)
- Implementability
 - $\circ \mathsf{EI} \rightarrow \{\mathsf{R}_{11}, \mathsf{R}_{11} \Diamond \mathsf{R}_{21} (\mathsf{A}, \mathsf{B})\}, \mathsf{E2} \rightarrow \{\mathsf{R}_{21}\}:$
 - EI can't get R₁₁ \Diamond R₂₁
 - Add the rule E3 \rightarrow {R₁₁(A,C),R₂₁(B,C)}:
 - EI can get $R_{11} \Diamond R_{21}$

Other Research Issues

- Query planning
 - Traditional methods do not consider access restrictions
 - If unimplementable, need to consider 3rd parties
 - 3P as a service w/ and w/o data retention
 - Multiple 3P's with different security/perf. properties
- Deny Rules
 - Consistency, conflict resolution, enforcement, ...
- Enterprises hosted on clouds
 - Trust model and involvement of infra. provider
 - Optimization & implementation issues

Thank you!

Configuration Mgmt Security

- Security of CM is crucial
 - Misconfiguration or attacks can have global impact
 - Delayed impact on restart, difficult to track
- Preliminary work
 - Exploits redundancy to check consistency.
- Numerous Challenges
 - Securing config data in clouds (restricted visibility)
 - Config security in sensor networks (limited resources)
 - Semantic info & context based protection.

Configuration Mgmt is Hard

- Growing Complexity
 - Heterogeneous HW/SW & network.
 - Multiple levels (devices to distributed data centers)
 - Virtualization -- #assets, increasing dynamicity.
 - A variety of config. repositories
 - Firmware in devices, config files, pkg DBs, CMDBs, ...
 - Different interfaces, data formats, semantics, ...
- Other Issues
 - Out of band vs. In-band access to config. data
 - Cradle to grave automated mgmt