Mission Impact/Threat Assessment for the Cyber Domain

23 May 2012

George Tadda
Senior Computer Scientist
Air Force Research Laboratory
Overview

• Motivation
• Approach
• Implementation Concepts
Motivation
(Reality of Most Environments)

Today WE Have...

Tactical
- Moving Objects 80/sec
- 1000’s of Objects
- The Analyst/Operator

Cyber
- Class B Address Space
- 26,000 Alerts/day
- Drowning in data and Inundated with “dots” on map or messages.
- INFORMATION STARVED
- INCOMPLETE, CONFLICTING DATA

Global
- 3 – 4 Petabytes/day
- (E-mail, Published Pages, etc)
- SA is Highly Operator Dependent and 100% Mental Process
 - Stress
 - Fatigue
 - Experience
- LIMITED BY INDIVIDUAL’S ABILITIES

...and MORE
Motivation

(STEP 1: From Data -> Complex Relations/Situation(s))
(STEP 2: From Complex Relations/Situation(s) -> Anticipation)

Today WE Have...

TACTICAL

Knowledge Of Units

TRENDS
(Obj Types/No.)

Data Information

Knowledge Of Atcks

TRENDS
(Network, Host)

Information Assessment

Cyber

ATTACKS

ALERTS

Data Information

Information Assessment

Global

EVENTS

TRENDS
(Economic, Military)

Information Assessment

...and MORE

Sensemaking
What is...

Plausible Futures
(Intent, Opportunity, Capability)

Anticipation
Most Likely/
Most Dangerous eCOA

Weapons Proliferation

Weapons of Mass Destruction

DISTRIBUTION A. Approved for public release; distribution unlimited. Approval given by case number 88ABW-2012-2345.
Most popular is the Joint Director’s of Laboratory (JDL) Model (Sensor-based)
- Functional Model
- 5 Levels (Level 0, 1, 2, 3, 4)
- Published By Llinas, Hall, White (1992)
- Most work concentrated on Level 0/1/4 (Dots on Map)
- Little definition of Level 2/3 (What do they mean?)
- Bottom-up, Data Driven

• Receiving Much Attention Today from the Cognitive Community
• Mental Model
• 3 Levels: Perception, Comprehension, Projection
• Developed by: M. Endsley (1995)
• Extended by McGuinness and Foy for Resolution
• Top Down, Goal Driven
Approach
(Situation Awareness Reference Model)
Situation Awareness Process Model
(Where can automation help?)

From Observables to Threats (At Time, t)

- Observables
- Activities
- Models
- Knowledge of “Us”
- Damage
- Possible Futures
- Plausible Futures
- Potential Impact/Threat
- Knowledge of “Them”
- Knowledge of “Us”
- Configuration Data
- Current Status of Assets/Mission
- Collection Requirements
- Future Status of Assets/Mission
- eCOAs
- Tip-off
- Visualization

NOTES: Based on Papers Presented at ISIF 2008 and Results of Study Effort
Updated based on Workshop

DISTRIBUTION A. Approved for public release; distribution unlimited. Approval given by case number 88ABW-2012-2345.
Knowledge of “Us”

• Each mission, each asset, and each vulnerability has a state variable representing its operational status at a given time
• The knowledge of us also involves relationships between the entities, including:
 – Each asset can be associated with one or more missions
 – The accessibility or dependency between the assets
 – An asset can have multiple vulnerabilities, each has different effect to the asset’s operational capability
 – Each asset may have multiple state variables (e.g., a server can be discovered and still be operational)
• The vulnerabilities shall be associated with potential observables to be deduced from adversary (or blue’s, or incidental) activities
Current Impact Assessment

• Current Impact Assessment (the upper thread – comprehension or JDL Level 2) is effectively a damage assessment of what is occurring or just recently occurred

• What information is needed to accomplish this assessment?
 – Effected aspect(s) of the ‘asset’
 – Use of the ‘asset’ (or aspect) towards fulfilling the ‘mission’ or task
 – Roll up of the ‘effect’
Plausible Future Impact/Threat Assessment

Two information needs for the ‘lower thread’ – projection or JDL Level 3:

- Information to perform impact assessment on projected future activity (this information is essentially identical to that needed for current impact assessment)
- Information to analyze and constrain possible futures to plausible futures; what is the information need?
 - Knowledge of ‘Us’
 - Vulnerabilities
 - ‘Terrain’
 - Configuration
 - Mission Map
 - Knowledge of ‘Them’
 - Capability
 - Capacity
 - Opportunity
 - Intent
Technical Challenges

• Knowledge of Us is essentially an information store and most of the information exists

• Greatest technical challenge for Knowledge of Us is information relevancy
 – Must be current, accurate, easy to acquire/update
 – Automated as much as possible
 – Dynamic

• Challenges for Knowledge of Them are similar but are further complicated by the information being sparse and difficult to obtain
Mission Mapping Abstractions

Figure reference; M. R. Grimaila, R. F. Mills, and L. W. Fortson, An Automated Information Asset Tracking Methodology to Enable Timely Cyber Incident Mission Impact Assessment, 13th International Command and Control Research and Technology Symposium (ICCRTS 2008), 17-19 Jun 2008, Seattle, WA.
Ontology

Ontology (3)
Cyber Security Incident Model

Impact Dependency Graph

Impact Dependency Graph

Intra-Mission Dependencies

Service to Mission Dependencies

Intra-Service Dependencies

Asset to Service Dependencies

Intra-Asset Dependencies

DISTRIBUTION A. Approved for public release; distribution unlimited. Approval given by case number 88ABW-2012-2345.
Effect/Impact Propagation

• Impact Factor (IF) is a measure from the interval $[0, 1]$ which indicates the how much an attack is capable of compromising an asset where 0 is no impact and 1 means there is no operational capacity

• Operational Capacity (OC) is a measure from the interval $[0, 1]$ which indicates the level of compromise with 0 meaning totally compromised and 1 meaning fully operational

Then to calculate the operational capacity for an asset a, which is under direct attack x:

$$OC_a(t') := \text{Max} [OC_a(t) – IF_x(t'), 0]$$

Or, if an asset a is effected by attack x but not under direct attack

$$OC_a(t') = \text{Min} [OC_a(t), OC_b(t)]$$

Considering the Impact Dependency Graph, can propagate effects using the following formulas for OC:

$$OC_{OR}(t) = \text{AVE}(OC_1(t), OC_2(t), ..., OC_n(t))$$

$$OC_{AND}(t) = \text{MIN}(OC_1(t), OC_2(t), ..., OC_n(t))$$
Summary

• Motivation
• Approach
• Implementation Concepts