
AFCEA Symposium

George Mason University

C4I Center

May 20, 2014

Challenges Associated with
Implementing Sub-Second /

Dr. Abdul Rahman

Enlighten IT Consulting Inc.

7467 Ridge Road

Suite 140

Hanover, MD 21076

(Near) Real-Time Alerting Capabilities
for Active Cyber Defense

What is the
Alerting

Streams Concepts

Ingest

Optimizations

Agenda Evaluation

Optimizations

Future
Ideas

Architecture

Alerting

Overview

Based on our experience, alerting is a way to query a stream

of data based on any of the following criteria:

Set of cyber data

Ex:

IPs and IP ranges

(including CIDR)

Geo: A

geolocation

bounding

box

Data types:

Ex:

XML, json,

csv, binary

Boolean

expression

such as

(a && (b || c))

How do we rapidly process, filter, analyze,

alert, tip, share, and store this information?

Challenges in

CND

Key Challenges:

• Data volumes

• Processing

• Filtering

• Optimization

• Speed

IDS, IPS, Firewalls, Routers, Switches, and

other devices produce traps, logs, and alerts

that are critical to CND analysts

The alerting engine is the portion of the system

that runs and checks the user's queries against

the event data in the stream.

Alerting

Engine

If the data in an event matches then the engine will

fire off an alert with the raw event data and some

rule information.

This data then get persisted and pushed up to

users monitoring the rule.

Important Streams
Concepts

•Pipeline-
parallelism
•Data-parallelism
•Use threading
with caution

Exploit distributed
environnent via

parallelism

•Serialization
costs
•Network
limitations

Understand
overhead of

large amounts
of data on the bus

•Offers integration
with other streaming
functions but has
processing power
‘tax’

Java operators
add additional

overhead*

Alerting Engine
Architecture

BytesMessage
Listener

JMS

bytes

Threaded Splitter
(Round Robin)
w/Surge Protection

bytes

bytes

Streaming
Parsers

Threaded Splitter
(Round Robin)
w/Surge Protection

Metadata
Event Map

Rule Evaluators

bytes
w/Event ID

Event ID
& Rule IDs
for Hits

Streaming
Combiner

Join Streams
by Event ID

bytes
w/matching
Rule IDs

BytesMessage
Sender

JMS

data
message

hit
message

control
message

Rule Injectors

rules

UI Feed

Metadata
Event Map

Alerting Engine
Ingest

1 The entry point is a JMS listener. This operator

simply reads a BytesMessage and pushes the

raw byte contents out as quick as possible.

2 The next step in the flow is simply a ThreadedSplit

operator. It distributes the raw byte data to four

parsers. Also incorporates some surge protection

via a drop policy.

3 Finally, the parsers take the raw data and examine

it for each event contained in the byte data. It then

outputs every single event as a parsed map and

the event in raw data form.

Note: The raw data is simply a

 serialized (catalog) object.

For
Example

Ingest

Optimizations

To extract each event in the following data simple keep track of where the data begins

within the JSON as it is being parsed. When the parser is completed with the event object,

the parser copies the entire json object from the byte stream into a new byte stream and

decorates it with metadata

Use of Jackson's streaming

JSON api to parse events.
1

Extract raw event data from

by stream as JSON is being

parsed. This prevents having to

reserialize each single event in

order to generate the raw data.

2

The biggest optimization to ingest was related to how events were parsed.

Alerting Engine
Rule Evaluation

1 First is another threaded split sending the parsed

data to 8 rule evaluators. Like in ingest, it incorporates

some surge protection via a drop policy.

2 The rule evaluators will evaluate each event received

against all the rules. The evaluator then emits a single

event if any of the rules evaluated to true. The alert

event contains a single event id and all the rules that

evaluated to true.

3 The alert streams are then combined into a single

stream.

4 Each alert is then joined with the raw data stream

to get the matching raw event data.

5 Finally the alerts with the raw event data are sent

out over JMS as hits..

Alerting Addressing Challenges
using Alerting Engine Optimizations

1

the path in which

event data must be

sent through the

pipeline. Opted

instead for data-

parallelism.

Drastically
shortened

2

of threaded

queue as this

was having

a impact on

throughput.

Reduced
number

3

are written in C++

to minimize Java

overhead and more

importantly to utilize

the Boost which

provide the most

efficient libraries

for things such as

interval sets..

Rule
evaluators

4

we used boolean

expression trees to

represent the rules to

allow for shortcutting

the evaluation of the

rule. This also allows

for optimizations on

each rule to further

reduce the amount

of work required for

rule evaluation.

Finally and most
importantly

Boolean Expression
Optimizations Ex:

 a & false = false

 a | false = a

Constant Tree
Reduction

Ex:

 a & (b & c) = a & b & c

 a | (b | c) = a | b | c

Same Relational
Operator

Ex:

 a & (b) = a & b

Single Child on
Relational Operator

Ex:

 a & a = a

 a | a = a

Duplicate Criteria
Removal

A |

&

C B

Boolean Expression
Optimizations In the following example each node is

evaluated from left to right down the tree.

Weighted path sorting

A |

&

C B

1 4

6

1 2

| A

&

B C

4 1

6

2 1

Possible Criteria
Types

• Returns false on first false, else true

And

• Returns true on first true, else false

Or

2
Relational

Criteria

• Evaluates the value using the following operators = , != , > , <

Comparison Criteria

• Evaluates the value to a regular expression

• Always evaluated as string no matter what type field it is.

Regex Criteria

• Compares a value of a field on an event to a set of intervals

• Utilizes Boost's interval library for fast evaluation of large

interval sets

Interval Set Criteria

• Always returns true or false

• Mostly used as a placeholder for optimizations

Constant Tree Reduction

4
Field
Criteria

The amount of dropped events has dropped to less

than 0.0001%*

The largest bottleneck in the system is now the
throughput of the JMS topic providing the event
data

Optimization

 Results

Possible Future
Improvements

• Execution

• Monitoring

• Management

• Configuration

Command
and control

• Utilize direct

connection

protocols

instead of

JMS

Optimize path
for delivery of
events

• Use information

about how individual

criteria are being

evaluated to enable

earlier shortcutting

during future

evaluations.

• Throttle rules with

high evaluation cost,

even though they

rarely hit.

Runtime rule
optimizations

• Ex:

 a & (a | c) = a

 a | (a & b) = a

Additional Boolean
algebra optimizations

QUESTIONS

Enlighten IT Consulting, Inc.

7467 Ridge Road, Suite 140

Hanover, MD 21076

Phone: 410-850-7305 x171

Fax: 410-255-5522

info@eitccorp.com

