

Formalizing Battle Management Language:

A Grammar for Specifying Orders

Dr. Ulrich Schade

FGAN-FKIE
Neuenahrer Str. 20
Wachtberg, 53343

Germany
0049-228-9435-436

schade@fgan.de

Dr. Michael R. Hieb
Center of Excellence for C4I

George Mason University
4400 University Drive
Fairfax, VA 22030

USA
001-703-993-3990
mhieb@gmu.edu

Keywords: Battle Management Language (BML), Command and Control Information Exchange Data Model
(C2IEDM), Command and Control Simulation Interface Language (CCSIL), Command and Control (C2), Grammar,
Linguistics, Orders, Reports, Robotics

ABSTRACT: Battle Management Language (BML) is being developed as an open standard that unambiguously

specifies Command and Control information, including orders and reports built upon precise representations of tasks.

BML is both a methodology and a language specification, based on doctrine and consistent with Coalition standards.

Recent work has concentrated on leveraging standard data model semantics (particularly the Command and Control

Information Exchange Data Model) for a Simulation Interoperability Standards Organization (SISO) Coalition BML

(C-BML) specification. While current BML work has organized task representations around the Command and Control

Information Exchange Data Model and the 5 Ws (WHO, WHAT, WHERE, WHEN and WHY), the grammar is implicit rather

than explicit.

Development of a formal grammar is necessary for the specification of a complete language. Formalizing BML by

defining its grammar should follow the conventions determined by the theory of Linguistics. Initially, it must be

determined which type of grammar is to be used. The Chomsky hierarchy specifies that grammars can be Type 0

(unrestricted grammars), Type 1 (context-sensitive grammars), Type 2 (context-free grammars) or Type 3 (regular

grammars). While humans typically use a more expressive grammar (Type 1 or Type 2), automated processing is best

supported by a more constrained one (Type 2 or Type 3). Our analysis indicates that a Type 2 grammar best fits the

requirements for a BML.

To specify a BML grammar, rules must be developed to determine how to create valid BML sentences that describe

military tasks. An analysis of US and German Army 5-paragraph orders shows that a pure 5W based grammar can

neither cope with all of the expressions needed, nor exclude all sentences that violate our intuition of “correctness”.

Therefore, rules for BML sentences will require additional and more detailed semantics such that a verb (the 5W’s

WHAT) determines a structure (expressed as a “frame”) for the sentence. This verb frame will then reference the other

Ws and additional terms. Rules for the concatenation of BML sentences in our grammar will be guided by NATO

STANAG 2014 – “Formats for Orders and Designations of Timings, Locations and Boundaries”.

In this paper we propose an initial BML grammar that formalizes the construction of valid BML sentences as well as

their concatenation to form military orders. This is illustrated by an example from an Army Order from a Multinational

Interoperability Program (MIP) Exercise. We also address the use of this BML grammar in automated systems. Future

work includes 1) developing the grammar to express relationships between verbs; 2) further specifying how to

concatenate BML sentences; and 3) adding a third class of C2 information to be represented by BML – requests.

1. Need for Formalizing Task

Representations in Military Domains

The purpose of this paper is to propose a formalization of
Battle Management Language (BML) by developing a
grammar based upon Linguistic theory. The concept and
need for a BML are well documented [1, 7, 10, 23]. To
date, BML has defined an approach to resolving ambiguity
by leveraging certain existing standards (such as the
Command and Control Data Exchange Information Model
– the C2IEDM). However, a formal grammar has not been
designed, although the need for it has been identified [1].

To be clear about our intent, we view a BML grammar as
a subset of a more generic task representation language.
We will call this generic language Operational Tasking
Language (OTL). While the semantics of a military task
have unique aspects, we hypothesize that the syntax is
general for a certain class of “Operations” that we define
as “a planned activity involving many people performing
various actions” [24]. This is similar to the notion of
“Action” in the C2IEDM, where an Action is “An
activity, or the occurrence of an activity, that may utilize
resources and may be focused against an objective.” Our
approach to a BML grammar, therefore, is to base it on
formal Linguistic theory and design it to be applicable to
military, peacekeeping, police and fire operations,
industrial operations and other general uses. While we
realize that the grammar presented here will require
review and revision prior to standardization, we hope that
this proposal will be a positive contribution to the
formalization of BML.

In a general sense, an OTL grammar would be the same as
the BML grammar but the specifics of semantics, lexicon
and production rules would be different for different
domains. Thus an OTL could be specified for disaster
relief using a different set of missions and using a different
semantics than the C2IEDM.

BML will be useful to the extent that it becomes a
standardized “language” that not only has general
standards for what should be in an order, but also provides
the means for automated systems to distinguish between
missions. Currently a human can specify a mission using a
C2 system, but the system then only has the name of the
mission and some very simple relationships. BML will
add “meaning” to the mission by defining parameters that
will characterize and distinguish the mission.

To clarify the terms used in the BML grammar we give the
following definitions:

Order A tasking assigned by a superior to a
subordinate consisting of one or more tasks

Task Activity assigned by a superior

Activity A specific (often skilled) behavior

For completeness, we will briefly introduce the BML
concept and give a brief update as to the various
organizations involved in defining BML.

1.1 BML Concept

The definition of BML [3] is:

BML is the unambiguous language used to command

and control forces and equipment conducting military

operations and to provide for situational awareness

and a shared, common operational picture.

The major drawback of using computer-simulated training
is the need for large contingents of support personnel to
act as workstation controllers and provide the interface
between the training unit and the simulation. The group of
workstation controllers is often as large as, or larger than,
the training audience. While this enables training
opportunities at the corps and division echelon, it is still
resource-intensive and lacks the degree of fidelity that
actual combat operations present to the commander and
staff.

Related to this issue of large contingents of workstation
controllers, is the lack of effective means to share
information and directives between the simulation and the
C2 systems. Enabling the C2 systems to not only
exchange information but to also allow them to interact
directly with the simulation will significantly reduce
workstation controller requirements. Good progress has
been made in the area of sharing information, however, in
the area of controlling the simulation directly from the C2
systems significant progress still needs to be made. This is
due to the reliance on unstructured, ambiguous “free text”
within the operational C2 messages that are passed within
the C2 systems.

“Free text” existing in USMTF, JVMF, and other message
formats exists for the benefit of the human. The highly
trained, professional soldier has little problem dealing
with this “free text.” Current automated systems that deal
with “free text” handle it as a single data field and pass
the <character string> on. Understanding of the content of
the <character string> does not exist within the system.

A recent development in simulations is the command
agent or intelligent agent software. This type of
simulation is designed to receive general “mission type”

tasks, and cognitively process the tasks applying a
situational awareness. Using this information and by
applying knowledge of military doctrine, tactics and
techniques it determines its own solution to the problem
and then issues appropriate orders and directives to the
simulated forces. It subsequently monitors the task’s
progress against the planned progress. The intelligent
agent then makes corrections as necessary. This type of
simulation, layered over a more traditional simulation,
can greatly reduce the size of the workstation controller
contingent. Nevertheless, the introduction of “intelligent
agent”, “command entities”, or other Command Decision
Model (CDM) types of software requires unambiguous
structures. Free text messages are not an option. A clear,
unambiguous Battle Management Language is needed to
control these agents.

C2 systems are also evolving. The future systems are
incorporating automated decision aids, such as course of
action development and analysis tools, and mission
rehearsal simulations. While some emerging C2 systems,
automatically fill certain fields when operators are
entering Operations Orders, this is primarily situational
awareness information (e.g. time, location, etc.) and the
command information is still carried in free text form.

A predecessor of BML was the Command and Control
Simulation Interface Language (CCSIL), a highly
structured language for communicating between and
among command entities and small units of virtual
platforms generated by computers for the Distributed
Interactive Simulation (DIS) environment [4]. CCSIL
was successful in providing an unambiguous structure,
but was not consistent with the emerging C2 data
standards and was not maintained as a standard.

1.2 Current Coalition Initiatives

The Simulation to Command and Control Information
System Connectivity Experiments (SINCE) program is
investigating interoperability issues by conducting
multinational C2 experiments, supported by C2 and
Simulation systems, designed to address the
transformation of collaborative planning and
interoperable execution in a coalition environment [13].
This is a US-German Army Bilateral Collaborative
Project. SINCE uses a 5W-based Extensible Mark-up
Language (XML) schema (as does the current BML
concept described in Section 1.3) to represent the various
C2 products that embody Information Exchange
Requirements (IERs).

Within SISO, the Coalition BML (C-BML) Study Group
was formed in September 2004 to investigate the concept
of BML and, if warranted, develop a plan to develop a
BML Standard. The Study Group has conducted a number

of face-to-face and teleconference meetings through the
year since the Fall 2004 SIW, involving a membership of
over 100 persons from 11 different countries. For more
details about the work of the study group see [1]. As the
Study Group concluded, it recommended that a Product
Development Group (PDG) be formed to standardize the
emerging notion of BML. The C-BML Study Group has
worked closely with the Military Scenario Definition
Language (MSDL) Study Group to coordinate both PDG
proposals to ensure a consistent set of standards for
initialization, tasking and reporting.

In parallel to the C-BML Study Group activities, the
NATO Modeling and Simulation Group (NMSG)
established a 12 month Exploratory Team (ET-016) on C-
BML [1, 22, 23]. The team, led by France, endorsed the
requirement for a C-BML and has proposed that a 3-year
Technical Activity Program should be established. Their
recommendation was submitted to a meeting of the
NMSG in October 2005 in Poland and a NATO Technical
Activity (MSG-048) has been approved for 2006-2009.

1.3 Need for a Grammar

To date, the BML initiatives in SISO and NATO have
concentrated on using the C2IEDM to disambiguate
information pertaining to a task. A set of tables has been
identified in the C2IEDM that contains the BML
“structure” – the 5Ws. The argument has been advanced
that BML is not needed, as the C2IEDM itself is
sufficient to represent and disambiguate tasking
information. This, we believe, is a shortsighted view.
First, although the C2IEDM is a very expressive model
that allows an operation to be created, it still needs a
standard to represent orders and reports. Second, the
C2IEDM is for exchanging facts, but not for
communicating meanings and intentions. This, however,
is what a language is for.

To be more precise, the missions listed in the C2IEDM
(in the “action-task-activity-code” enumerated values) are
merely words with a vague textual description. While the
C2IEDM is designed to contain all of the information
necessary to plan a mission, there is no detailed
information on the mission itself. Thus, the “attack”
enumeration is never defined using relationships to other
objects in the C2IEDM. Or, conversely, the entire context
of the mission is described – the weather, the terrain, the
control measures that are associated with the overall
operation and so on – but the actual mission is never
defined beyond a one-word enumeration.

One question that arises is – “If BML is necessary, how
can one use the C2IEDM now without it?” The answer is

that the current C2IEDM planning implementations rely
on human commanders to interpret the definition and
assignment of tasks. This is certainly an advancement
over previous ways of creating plans and orders, but it
limits the use of the C2IEDM by automated systems that
do not have skilled commanders available, such as
simulations and robots. Furthermore, the lack of a
standardized BML (to be used in cooperation with the
C2IEDM) will eventually constrain the use of the
C2IEDM as more powerful reasoning engines (or
“intelligent agents”) become available.

A language is used to communicate orders, reports, and
requests. The task of the language’s grammar is to
connect words to communicable expressions. In this
sense, it puts together all the necessary information (about
a mission and its context) in a way that it can be
communicated outside the C2IEDM to a person, to a
robot and even to an intelligent agent. The 5Ws are a
good start for this purpose.

1.4 Roadmap to Rest of Paper

The remainder of this paper is organized as follows:
Section 2 gives a background on the relevant Linguistic
theory we will apply to BML. This section will discuss
the role a grammar serves a language in general and the
role a grammar should serve BML in particular. Section 3
reviews the current BML specifications to determine the
scope of an appropriate grammar and presents BML as a
context free grammar. Section 4 presents our approach for
such a grammar resulting in an initial BML grammar
appropriate for general task representation. Section 5
gives an example of using the grammar and Section 6
concludes with recommendations for future research.

2. Development of Formal Grammars

In his book “Syntactic Structures” [5], published in 1957,
Noam Chomsky answered the question “What do we
know when we know a language?” by postulating that
what we know is a set of words (the lexicon of this
language) and a set of rules used to generate sequences of
those words (sentences of this language). A sequence of
words is defined as grammatical if the sequence can be
generated by the rules operating on a lexicon.

By this approach, grammaticality does not mean that a
sentence is meaningful and thus conveys a message.
Chomsky gave the example (1) of a grammatical but not
meaningful sequence in order to illustrate this point.

(1) Colorless green ideas sleep furiously.

A formal grammar is defined as an abstract description of
a lexicon and rules. It therefore is a precise description of
a language; thus a grammar is necessary if one intends to
“design” a language like BML that will be processed
automatically.

2.1 Applicability of Formal Methods

Following Chomsky’s approach, in the field of
Linguistics a grammar G is defined as a quadruple, G =
{S, N, !, P}, where S is the starting symbol, N is a finite
set of non-terminal symbols, ! is a finite set of terminal
symbols (the lexicon), and P is a finite set of production
rules. A production rule expands a sequence of symbols
taken from the union of N and ! to another sequence of
symbols taken from the union of N and !. The only
restriction is that the left-hand side of a rule must contain
at least one non-terminal symbol. The language generated
by G, L(G), is the set of all sequences of symbols from !
which can be produced by applying the rules of P, starting
from S. Although N, !, and P are finite sets, L(G) need
not to be finite because recursion is allowed.

2.2 Types of Grammars

Chomsky defines four types of grammar. They are
ordered within what is designated as a Chomsky
hierarchy. Grammars of type 0 are unrestricted.
Grammars of type 1 have rules of the form "A# $ "%#
where A is a non-terminal symbol, ", #, and % are
sequences of terminals and non-terminals, and % consists
of at least one symbol. Such a rule can be understood as
“A is expanded to % in the context of " and #”. Thus,
these kinds of grammars are called context sensitive
grammars. Grammars of type 2 have rules of the form A
$ % where again A is a non-terminal symbol and % is a
sequence of terminals and non-terminals. Such a rule can
be understood as “A is expanded to %”. In contrast to type
1 grammars, no context is to be taken into account.
Therefore, these grammars are called context free

grammars. Grammars of type 3 are even more restricted
with respect to their rules. Grammars of type 3 are also
called regular grammars. Grammars of type 0 and type 3
are not used in practical applications and are not
considered further in this paper.

2.3 Syntactic Concepts: Constituency and

Subcategorization

In order to state a formal grammar for BML, we have to
specify the lexicon (the set of terminal symbols !), the set
of non-terminal symbols N and the set of production rules
P. In order to point out how the specifics of BML reflect
in our grammar, we have to introduce some terminology
and explain the syntactic concepts constituency and

subcategorization. A complete presentment of the basic
concepts of syntax can be found in “Lectures on
Contemporary Syntactic Theories” by Peter Sells [19,
Chapter 1], a work that also presents and compares some
of the main linguistic syntactic theories. Our BML
grammar is based on the Lexical Functional Grammar
introduced by Kaplan and Bresnan [12] and described
more fully in Bresnan [2].

The set of non-terminal symbols can be divided into a set
of pre-terminals and a set of constituent symbols. A pre-
terminal symbol is a symbol that can be expanded into a
terminal symbol or a sequence of terminal symbols. In
principle, in order to generate “move the unit”, the
production rule “S $ move the unit” could be used. Then,
S would be a pre-terminal. However, linguists categorize
words into classes, traditionally, in verbs, nouns,
adjectives, determiners, and so on. This categorization is
reflected by production rules like “DET $ the” or “N $
unit” representing that the is a determiner and unit is a
noun. V, DET, N and so on are standard pre-terminals.

Considering these word categories, “move the unit” can
be generated by adding “S $ V DET N” to the category
rules. However, syntax is more than providing a grammar
for the generation of sentences. It also has to assign a
meaningful structure to these sentences. Sentences are
structured into constituents. With respect to “move the

unit”, “the unit” is separated from “move”. Both are
constituents of the sentence, and both can be constituents
of other sentences as well, e.g., “the unit” is also a
constituent of “resupply the unit”. Constituents can be
identified as sequences (of words) answering questions.
For example, in the sentence “advance to phase line

Tulip”, “advance” answers the WHAT, and “to phase line

Tulip,” answers the WHERE. The idea of the 5W-grammar
directly stems from constituency.

Another important syntactic concept is subcategorization.
Words do not only belong to a category but sometimes
also to a subcategory. This is especially true for verbs.
Verbs define what kind of other constituents are allowed
or even required in order to form a sentence. For example,
“move” allows a prepositional phrase specifying a
destination like “towards the assembly area”. In contrast,
“deny” does not. Subcategorization taps into semantics,
especially into the theory of semantic roles [6, 9, 11, 21],
but also bears syntactic aspects. With respect to our BML
grammar, we will argue in subsections 3.2 and 3.3 that we
apply subcategorization to our “verbs”. In combination
with the Lexical Functional Grammar’s principle that
syntax is lexically driven we see that in BML a chosen
“verb” spans a frame that has slots to be filled by
constituents. This is further described in 3.2.

3. Design of a BML Grammar

According to the requirements discussed in Section 1,
BML is based on the standard data model C2IEDM, since
it is concerned with military operations. With respect to a
BML grammar this means that the attributes and
enumerations provided by the C2IEDM constitute the set
of terminal symbols. For example, the C2IEDM table
“action-task-activity-code” lists the tasks military units
might execute. Therefore, the values given in this table
will be verbs in BML. This relationship between BML
and the C2IEDM offers the obvious benefit that the
definitions the C2IEDM provides for all its attributes and
values can be considered as the meanings of these
attributes and values. Therefore, the C2IEDM constitutes
the lexical semantics for BML. As it is clear that the
lexicon (the set of terminal symbols) will be provided by
the C2IEDM (according to Chomsky’s question “What do
we know when we know BML?”) we also have to define
BML’s set of production rules. As a first step, we will
restrict this set by defining the type of grammar for BML.

3.1 Analysis of BML requirements to determine the

type of Grammar

Determining a grammar for a language means to find the
most restrictive grammar (the higher the type the better)
that generates the language. Natural languages are
supposed to be context-sensitive as proposed by Chomsky
[5]. This means that natural languages are supposed to be
generated by grammars of type 1. However, BML has to
be processed automatically, and the tools (and specific
grammars) developed within the field of computational
linguistics are restricted to deal with context-free
languages, languages generated by grammars of type 2.
Therefore, the question is, what do we lose if we give
BML a type 2 grammar in order to support automatic
processing? (Type 3 grammars do not support
constituency; therefore, we do not take them into
consideration.) Here is the answer from a classical
workbook on computational linguistics: “The
fundamental thing that should be kept in mind is that the
overwhelming majority of the structures of any natural
language can be elegantly and efficiently parsed using
context-free parsing techniques” [8, p.133]. With this in
mind, we choose BML’s grammar to be of type 2.

3.2 Evaluation of 5Ws Concept

In this subsection, we will evaluate the concept of the
5Ws and argue for their evolution into the grammar we
are defining. If viewed as a formal language, the 5W
concept could define a grammar in which the Ws (WHO,

WHAT, WHERE, WHEN and WHY) make up the set of non-
terminal symbols. The production rules of such a

grammar would have the form W $ % where W is one of
the five Ws and % is a sequence of terminals based on the
C2IEDM. Thus, a 5W grammar would be a type 2
grammar as required, and the Ws would be pre-terminals
in the terminology given in subsection 2.3. More details
of the 5W concept and its mapping into C2IEDM as well
as an elaborated example can be found in [10]. This
example also illustrates one of the problems of the 5W
concept looking from a Linguistic theory viewpoint. In
the example ([10] – Figure 7) the WHO is expanded to an
organization’s name. This organization’s relationship to
the task (as given by the WHAT) is mapped on C2IEDM’s
table “organization-action-association”. However, this
table only expresses relationships like “gives the order for
the task” or “observes the task”, but not “executes the
task”. The latter relationship is expressed by “action-
resource” in the C2IEDM. Especially with respect to
issuing orders, BML must both specify the organization
that orders a task (the Tasker) and the organization that is
ordered to execute it (the Taskee). This “split” of the WHO
is something we incorporated in our grammar.

There are other problems as well with the implied
grammar of the 5Ws. As has been already mentioned, the
set of all sequences of terminal symbols that can be
generated by applying the rules of a grammar constitutes
this grammar’s language. These sequences are
grammatical sequences. All other sequences are
ungrammatical. An ideal grammar would restrict the set
of sequences such that a sequence judged as grammatical
is a sequence judged as “correct” by an average person
and such that a sequence judged as ungrammatical is one
judged as “incorrect” by an average person. These
judgments are called intuitions by linguists, and a
grammar based on the 5W concept does not meet our
intuitions. Let us consider the examples in (2):

(2a) WHO: 13 (NL) MechBde WHAT: Rest
(2b) WHO: 13 (NL) MechBde WHAT: Support
(2c) WHO: 13 (NL) MechBde
 WHAT: Rest 43 (GE) MechBde
(2d) WHO: 13 (NL) MechBde
 WHAT: Support 43 (GE) MechBde

In all examples above, only WHO and WHAT are given.
(2a) is an order to the 13th (NL) Mechanized Brigade to
Rest, and (2d) is an order to support the 43rd (GE)
Mechanized Brigade, respectively. These orders are
correct to our intuitions. However, our intuition judges
(2b) – the order to support as incorrect since there is no
unit that is supported – and a unit would not support itself.
Also, (2c) – the order to Rest the 43rd (GE) Mechanized
Brigade – seems incorrect as a unit will “Rest” by being
removed from current operations and it is not possible for
a unit to perform this for another unit.

Two different kinds of issues can be identified by the
analysis of these examples. First, there is the “object
problem” which means that a grammar based only on the
5Ws would lack a WHOM. Without a WHOM, task types
(the equivalent of a verb) and objectives (the equivalents
of verb arguments) cannot be separated, and, therefore, it
is necessary to define a huge lexical set of possible
WHATs. Indeed, all allowed combinations of action terms
like “support” or “rescue” with objective terms like “43
(GE) MechBde” must be inserted into the lexicon as
sequences of terminal symbols which might expand the
pre-terminal WHAT. This is obviously not practicable.
Instead, the grammar should separate the verb from the
WHOM-constituent, allowing rules like “WHAT $ attack
WHOM” where WHOM is a pre-terminal symbol which can
be expanded to the name of any (hostile) unit present in
the actual scenario.

The second problem stems from the absence of
subcategorization in the 5W implied grammar. Verbs
have to be subcategorized. In our view, “frames” should
be associated to them such that all verbs spanning a
certain frame are members of the same sub-category. A
verb’s frame defines what can be combined with this
verb. For example, in (2) the verb “support” can (and
should be) combined with an argument to represent the
organization that is supported whereas the verb “Rest”
cannot be combined with such an argument.

4. A BML Grammar

In this section, we will present a grammar for describing

tasks in the context of an operation for planning and

execution. The grammar is designed to specify tasks so

that their description can be used in automated systems.

4.1 Scope

The grammar presented in this section is restricted with
respect to its scope. The idea behind this is the following.
BML has to be developed step by step. Then, in each step,
lessons learned during the preceding steps can be applied.
We decided to build on the 5Ws concept by developing a
“tasking grammar”. A tasking grammar is concerned with
formalizing orders. At the moment, other kinds of
command communication, e.g., reports, are left for future
treatment. We decided in favor of orders for two reasons.
First, the development of production rules (the set P of a
formal grammar) for orders is easier than the development
of production rules for reports. Reports include a larger
richness of linguistic means, e.g., modality terms like
“most probably”, “apparently”, “possibly” and so on,
which are hard to translate into a language written for
automatic processing. Second, with respect to C2 systems

and simulation systems, the processing of orders is of
higher priority than the processing of reports.

The format of orders is defined by the NATO standard
STANG 2014 “Format for Orders and Designation of
Timings, Locations and Boundaries”. An Operational
Order is divided into five sections 1) Situation, 2)
Mission, 3) Execution, 4) Administration and Logistics, 5)
Command and Signal, and the respective annexes. For
conveying the essence of an order to a simulation system,
Section 3 is currently the most applicable given the
behaviors available. Section 3 will “summarize the overall
course of action”, “assign specific tasks to each element
of the task organization”, and “give details of
coordination”. In the following subsections, we will
outline our solution to these aspects.

4.2 Syntax

As has been already said in section 2, a grammar deals
with the syntax of a sentence but not with its semantics.
This is also true for our tasking grammar. Nevertheless,
semantics is an important aspect of a language because in
the end content has to be conveyed. So, we will come
back to semantics in the next subsection, but start with
syntax. In this subsection, we will discuss the production
rules of our tasking grammar.

In order to represent the major parts of an order’s
execution section, our grammar starts with a single rule:

(3) S $ B* C_Sp* C_T*

This rule means that the BML order consists of three
parts, basic expressions to assign tasks to units, spatial
coordination expressions, and temporal coordination
expressions. A basic expression is indicated by the non-
terminal symbol B, a spatial coordination is indicated by
the non-terminal symbol C_Sp, and a temporal
coordination by the non-terminal symbol C_T. The star
indicates that arbitrarily many of the respective
expressions can be stringed together.

In order to avoid the problems we discussed with a
grammar based on the 5Ws, the expressions above are
composed of a terminal symbol and its frame. To be more
precise, a basic expression’s terminal symbol is a tasking
verb, taken from C2IEDM’s table “action-task-activity-
code”. With respect to basic expressions, the rules have
the general form given in (4a). (4b) to (4f) give examples.

(4a) B ! Verb Tasker Taskee (Affected|Action) Where

Start-When (End-When) Why Label (Mod)*

(4b) B ! advance Tasker Taskee Route-Where

Start-When (End-When) Why Label (Mod)*

(4c) B ! assist Tasker Taskee Action At-Where

Start-When (End-When) Why Label (Mod)*

(4d) B ! block Tasker Taskee Affected At-Where

Start-When (End-When) Why Label (Mod)*

(4e) B ! defend Tasker Taskee Affected At-Where

Start-When (End-When) Why Label (Mod)*

(4f) B ! march Tasker Taskee Route-Where

Start-When (End-When) Why Label (Mod)*

Tasker is a non-terminal to be expanded by the name of
the one who gives the order, Taskee is a non-terminal to
be expanded by the name of the unit that is herewith
ordered to execute the task, and Start-When and End-

When are non-terminals to be expanded by temporal
phrases. The temporal phrases for Start-When are given in
(5a) and (5b). End-When expands analogously, but is
optional as indicated by the brackets. Tasker, Taskee,
Start-When, and End-When appear in each basic rule.

(5a) Start-When ! start Qualifier1 Point_in_Time
(5b) Start-When ! start Qualifier2 Action

In (5a) and (5b), respectively, Point_in_Time expands to a
point in time (a datetime), Action expands to a label which
refers to an action, e.g. another task, Qualifier1 expands
to a value from C2IEDM’s table “action-task-start-
qualifier-code”, e.g. to nlt (not later than), and Qualifier2
expands to a value from table “action-temporal-
association-category-code”. (5b) refers to a relative point
in time, e.g. at the start of a particular action (whenever
this may occur).

Affected in (4a), is a non-terminal to be expanded by the
name of the one to be affected by the task; in linguistic
terms this is the patient. Whether Affected is part of a rule
depends on the tasking verb. It is there if the tasking
verb’s frame requires it as in (4d) and (4e). The same is
true for Action in (4a) – separated from Affected by the
exclusive or “|” – which occurs in (4c) besides its
occurrence in (5b). The same is also true for the Where in
(4a). It is either an At-Where or a Route-Where as
determined by the verb. A Where has to be expanded by
location phrases. These expansions are complex
expansions, especially in the case of Route-Where. E.g.,
Route-Where can be expanded to “from Location to
Location via Location and Location”. Some of the
respective phrase rules are given in (6).

(6a) At-Where ! at Location

(6b) Route-Where ! Source Destination Path |
Source Path | Destination Path | … | along Route

(6c) Source ! from Location

(6d) Destination ! to Location

A basic rule ends with the non-terminals Why, Label and
the optional Mod. Why represents a reason why the task
specified by the rule is ordered. At the moment, it could
be expanded by a single tasking verb (a value of “action-
task-activity-code”). It is to be seen whether a more
complex expansion is necessary, e.g., an expansion by a
reduced basic expression. Label is expanded by a unique
identifier. By this identifier the single order represented
by the respective basic expression can referred to in other
expressions, especially in temporal coordinations. The
optional Mod (for modifier) is a wild-card that represents
additional information necessary to describe a particular
task, e.g., formation – to specify a particular formation for
an advance, or speed – to specify the speed of a road
march.

The abstract rule for spatial coordination is (7a); (7b) and
(7c) give examples.

(7a) C_Sp ! Control_Feature Tasker (Taskee)

Start-When (End-When) Label
(7b) C_Sp !area of responsibility Tasker Taskee

Start-When (End-When) Label
(7c) C_Sp ! hazard area Tasker

Start-When (End-When) Label

The spatial coordination rules correspond to the basic
rules in their form. The key words denote control features,
e.g., lines or areas. These are taken from C2IEDM’s table
“control-feature-type-category-code”. In this case the
area of responsibility is assigned by a commander to be
used by a subordinate and is considered an area well
defined by natural features or control measures for the
exclusive operation of the subordinate unit’s forces.
However, a hazard area is identified by a unit, but not
assigned to a subordinate unit, hence there is no Taskee

argument.

The abstract rule for temporal coordination is (8a); (8b) is
an example expression, denoting that the action referred
to by “label_3_12” is ordered to start exactly when the
action referred to by “label_3_11” ends.

(8a) C_T ! Temporal-Term Qualifier2 Action Action

(8b) start at-the-end-of label_3_12 label_3_11

In temporal coordinations, the non-terminals Action have
to be expanded by different unique identifiers that serve
as labels for basic expressions. Temporal-Term is either
“start” or “end” signifying whether the start or the end of
the first Action is determined by the expression. Qualifier2
is expanded by a relational expression that determines
how the start (or the end) of the first Action is related to
the temporal interval the second Action defines. As has
already been said with respect to (5b), Qualifier2 is taken
from C2IEDM’s table “action-temporal-association-
category-code”.

Additional examples of BML basic rules and abstract
rules are given in Appendix A for a representative sample
of C2IEDM tasks and control measures.

4.3 Semantics

As has already been mentioned, the semantics of the
terminals are names denoting units and other objects of
the real world or are taken from C2IEDM tables. In the
latter case, the C2IEDM provides semantic definitions for
the terms. The semantic value of the expressions
combined from the terminals is in a very concrete sense
the action a simulation system executes from it.

5. Example

In order to illustrate how the execution part of an order

looks like in BML, we will give an example in this

subsection. The original order was used in the “Integrated

Operational Test and Evaluation” exercise of the

“Multilateral Interoperability Programme (MIP)”,

September 8th to 26th, in the city of Ede in the

Netherlands.

5.1 Example of a Mission Order from the Army

Domain

This exercise order is released from the Multi-National
Division (West) led by Spain and directed – among others
– to the 13th Dutch Mechanized Brigade
(M_BDE13(NL)). The following shows some of its
content:

3. EXECUTION.

[…]

b) Tasks to Manoeuvre Units.

13 NL MECH BDE:

Phase 1A: Fast Tactical March to PL TULIP by or behind
ROUTE DUCK.

Phase 1B: Defense in depth sector EAST, blocking
penetration ALFA.

Phase 1C: Assist the rearward passage of the 12 (SP)
Cavalry Regiment

In BML this would be translated into

march MND-West(SP) M_BDE13(NL)
along DUCK start at Phase1A label_3_11

defend MND-West(SP) M_BDE13(NL)
at EAST start nlt Phase1B label_3_12;

block MND-West(SP) M_BDE13(NL) MIR320(BL)
at TULIP start nlt Phase1B label_3_13;

assist MND-West(SP) M_BDE13(NL) label_3_57
at EAST start nlt Phase1C label_3_14;

...

In the BML version of the order, the Tasker is the Multi-
National Division West, and the Taskee is the 13th Dutch
Mechanized Brigade. This is repeated in all basic
expressions. Within the WHERE-phrases, the control
features are denoted by their names DUCK, EAST, and
TULIP. The Start-When-phrases use the key word start,
qualifiers from C2IEDM’s table “action-task-start-
qualifier-code”, namely at and nlt (“not later than”), and
names which denotes points in time (Phase1A, Phase1B,
Phase1C). The last BML sentence (assist) illustrates the
use of a label. The assist task has as its object the
rearward passage of the 12th Spanish Cavalry Regiment.
Note that the Multi-National Division West ordered both
the assist task and the rearward passage task. The
rearward passage task received the label label_3_57,
which is used to refer to it.

In order to represent the order’s “blocking penetration
ALFA” directly, the BML representation of the order has
to also include the order’s section 1a “SITUATION –
Enemy Forces” as well. In the representation of this
section, the anticipated move of the MIR320(BL) could
have been given a label (corresponding to “penetration
ALFA”) that then could be used in other BML sentences.

Currently there are no Why terms in this example as they
remain to be developed in the grammar.

5.2 Preliminary Findings

In order to run a preliminary test for the grammar
presented in section 4, we wrote a simple bottom-up shift-
reduce parser in PROLOG. The parser takes basic
expressions, checks their grammaticality and transforms

them into a feature-value matrix. Feature value matrices
are a standard format to represent information in
computational linguistics. They allow the representation
of incomplete information, can be merged by means of
unification [20], and can be easily transformed into XML.
(In principle, a XML scheme can be calculated which
covers all the expressions our grammar allows, whereas
the BML expressions are additionally restricted by lexical
means in accordance with the design principles of LFG
[2]). The transformation of the BML expressions into
feature-value matrices also allows us further processing
within our SOKRATES system [15, 17, 18]. In particular,
the matrices can be enhanced semantically and the results
can then be visualized on a map.

Example (8) shows some of the parser’s rules and
illustrates the principles behind it:

(8a) parse([Word|Restwordlist], Stack, Result):-

reduce([Word|Stack], Reduce_Result),
 parse(Restwordlist, Reduce_Result, Result).

(8b) reduce1([[type: facility|FM], to|Rest],

[[destination: [type: facility|FM]]|Rest]).

(8c) reduce1([[start:[type:datetime|TM]],
[route:RM],
[type:unit|U2M],
[type:unit|U1M],
advance], Result):-

unify(…, …, Result).

(8a) shows the core rule. The parser processes three lists.
First, the list of not yet consumed words, second, a stack,
and third a list for the parsing result, the matrix to be built
up. By one parsing step, a word is shifted from the word
list to the top of the stack. Then, the stack is reduced by
applying reduce rules. If reduction is no longer possible,
the whole process starts anew. In the end, all words are
shifted to the stack. In the case of a grammatical input
sentence, if all words are consumed and all possible
reductions are done, the stack contains the matrix, and
nothing else. Otherwise the analyzed sequence of words is
not grammatical. (8b) presents a single reduction step. It
says that if the top of the stack is a matrix of type facility
followed by the word to, then these two items can be
combined to a matrix of type destination. (8c) presents –
in an abbreviated version – another single reduction step:
If the stack consists of the task verb advance at the
bottom of the stack and on top of it matrices for the
Tasker, the Taskee, a route, and start time, then these
matrices can be merged by unification. The result is a
matrix for the advance task. (8c) is the parser’s
abbreviated equivalent to (4a) representing the frame for
advance.

6. Conclusions

In this paper we have presented a grammar for BML. By
defining the basic phrase in terms of an activity, special
coordination and temporal coordination, we believe we
have captured the essence of operations. Thus we
hypothesize that the grammar is applicable to more
general types of operations and that a more general
language for operations is possible (as with OTL defined
in Section 1).

Of particular interest is the applicability of the grammar
to the C-BML prototyping and evaluation. Any BML
grammar must be developed and refined through a variety
of uses and applications. The grammar must be used to
create specific BML content for different domains (e.g.
Army, Navy, Air Force). The content for supporting
specific missions will consist of elaborating the semantics
and defining production rules that are sufficient and
necessary for the missions of interest. And once the BML
content is established, it then has the potential to increase
the standardization of simulation behaviors.

The next step in the development of a BML grammar is
the evaluation of a prototype grammar as used by a
simulation system. For this purpose, a mapping from the
BML defined by the grammar into the language of a
simulation system will need to be performed. Then,
military orders will need to be translated into the
grammar’s format. After that, the order can be
automatically transferred into the language of the
simulation system, and the execution of simulated units
evaluated. The results will then give feedback for
refinement of the mapping (between BML and the
language of the simulation system) and also for the
adjustment of the prototype grammar.

This current initial grammar work has focused on
“Orders”, but we recognize the need for development
focused on the C2 information types of “Reports” and
also “Requests”.

Another future direction for a BML grammar is in the
area of semantics. We plan to investigate an assistant
system that checks for semantic consistency after an order
has been written in BML. Some of the checks this
assistant system could make are “Does the Tasker have
command and control authority over the Taskee?”, “Does
the Taskee have the capability and the necessary
equipment to execute the ordered task?”, and “Is the
route selected in the order clear?” These consistent checks
will be based on an ontology for military operations [14,
16, 17].

7. Acknowledgements

Dr. Schade performed this work at FGAN’s Research
Institute for Communication, Information Processing and
Ergonomics in cooperation with Bundeswehr IT office,
section A5. Dr. Hieb performed this research under the
Center for Excellence in C4I at George Mason University.
We thank all of the SISO C-BML and NATO MSG-048
participants for their contributions to this area and
acknowledge that this work could not have been
performed without the intellectual contributions from
these individuals. We thank Eric Nielsen, Martin Kleiner
and Scott Lambert for their expert assistance on
interpreting Army doctrinal terms. We also acknowledge
the very thorough review of Curt Blais.

8. References

1) Blais, C., Hieb, M.R., Galvin, K., “Coalition Battle

Management Language (C-BML) Study Group
Report,” 05F-SIW-041, Fall Simulation
Interoperability Workshop 2005, Orlando, FL,
September 2005.

2) Bresnan, J., Lexical-Functional Syntax. Malden, MA:
Blackwell, 2001.

3) Carey, S., Kleiner, M., Hieb, M.R. and Brown, R.,
“Standardizing Battle Management Language – A
Vital Move Towards the Army Transformation,”
Paper 01F-SIW-067, Fall Simulation Interoperability
Workshop, 2001.

4) CCSIL Message Content Definitions, Salisbury, M.,
“Command and Control Simulation Interface
Language (CCSIL): Status Update,” Twelfth
Workshop on Standards for the Interoperability of
Defense Simulations, 1995
 (http://ms.ie.org/cfor/diswg9503/diswg9503.pdf)

5) Chomsky, N., Syntactic Structure. The Hague:
Mouton, 1957.

6) Fillmore, C.J., “The Case for Case,” In: Bach, E. &
Harms, R.T. (Eds.), Universals in Linguistic Theory,
New York: Holt, Rinehart and Winston, 1968.

7) Galvin, K., “Does the United Kingdom need a
Battlespace Management Language?,” Paper 04F-
SIW-051, Fall Simulation Interoperability Workshop,
September 2004.

8) Gazdar, G. & Mellish, C., Natural Language

Processing in PROLOG: An Introduction to

Computational Linguistics. Wokingham, UK:
Addison-Wesley, 1989.

9) Gruber, J.S., Lexical Structures in Syntax and

Semantics. Amsterdam, NL: North Holland, 1976.

10) Hieb, M.R., Tolk, A., Sudnikovich, W.P., and Pullen,
J.M.: “Developing Extensible Battle Management
Language to Enable Coalition Interoperability,”
Paper 04E-SIW-064, European Simulation
Interoperability Workshop, June 2004.

11) Jackendoff, R.S., Semantic Structures. Cambridge,
MA: MIT Press, 1990.

12) Kaplan, R. & Bresnan, J., “Lexical-Functional
Grammar: A formal system for grammatical
representation,” In: Bresnan, J. (Ed.), The Mental

Representation of Grammatical Relations.
Cambridge, MA: MIT Press, 1982.

13) Mayk, I., Klose, D., Chan, A., Mai, M. & Negaran,
H., “Technical and Operational Design,
Implementation and Execution Results for SINCE
Experimentation 1,” 10th International Command and
Control Research and Technology Symposium,
Tysons Corner, VA, June 2005.

14) Schade, U., “Towards an Ontology for Army Battle
C2 Systems,” In: Proceedings of the 8

th
 ICCRTS,

June 17-19, 2003. National Defense University,
Washington, DC, 2003.

15) Schade, U., “Automatic Report Processing,”
Proceedings of the 9

th
 International Command and

Control Research and Technology Symposium

(ICCRTS), Command and Control Research Program
(CCRP), Copenhagen, September 2004a.

16) Schade, U., “Towards a higher level of
interoperability: Ontology components for command
and control systems,” In: Proceedings of the NATO

R.T.O. IST-Panel Symposium on Coalition C4ISR

Architectures and Information Exchange

Capabilities. Den Haag, 2004b.

17) Schade, U. and Frey, M., “Beyond Information
Extraction: The Role of Ontology in Military Report
Processing,” In: Buchberger, E. (Ed.), KONVENS
2004: Beiträge zur 7. Konferenz zur Verarbeitung
natürlicher Sprache (Schriftenreihe der
Österreichischen Gesellschaft für Artificial
Intelligence, Band 5). (pp 177-180), Vienna, Austria,
September 2004c.

18) Schade, U., Frey, M. & Becker, S., “From Reports to
Maps,” In: Bunt, H., Geertzen, J. & Thijse, E. (Eds.),
Proceedings of the Sixth International Workshop on

Computational Semantics (IWCS-6) (pp. 407-409),
January 12-14, Tilburg, The Netherlands, 2005.

19) Sells, P., Lectures on Contemporary Syntactic

Theories (= CSLI Lecture Notes 3). Stanford, CA:
CSLI, 1985.

20) Shieber, S.M., An Introduction to Unification-Based

Approaches to Grammar (CSLI Lecture Notes 4).
Stanford, CA: CSLI, 1986.

21) Sowa, J.F., Knowledge Representation: Logical,

Philosophical, and Computational Foundations.
Pacific Grove, CA: Brooks and Cole, 2000.

22) Tolk, A., Galvin, K., Hieb, M. R., and Khimeche, L.,
“Coalition Battle Management Language,” Paper
04F-SIW-103, Simulation Interoperability Standards
Organization, Fall Simulation Interoperability
Workshop, Orlando, FL, September 2004.

23) Tolk, A., Hieb, M. R., Galvin, K., and Khimeche, L.,
“Merging National Battle Management Language
Initiatives for NATO Projects,” Paper 12 in
Proceedings of the RTA/MSG Conference on “M&S
to address NATO’s new and existing Military
Requirements,” RTO-MP-123, Koblenz, Germany,
October 2004.

24) WordNet, English Dictionary,
http://www.wordreference.com, 2006

Author Biographies

ULRICH SCHADE is a Senior Scientist at the Research
Institute for Communication, Information Processing and
Ergonomics that is part of FGAN financed by the German
MoD and is a Lecturer at the Institute for Communication
Research and Phonetics, Bonn University. Dr. Schade
received his MA in Mathematics in 1986 and his PhD in
Linguistics in 1990 at Bielefeld University (Germany),
developing a connectionist model for language production
processes. He has written many papers and book articles
in the areas of Language Production, Ontology
Development, and Cognitive Models.

MICHAEL HIEB is a Research Associate Professor with
the Center of Excellence in C4I at George Mason
University. Dr. Hieb was the Co-Chair of the SISO C-
BML Study Group and also was on the team that
developed the initial BML concept for the US Army
while with Alion Science and Technology. Dr. Hieb was
the Technical Director of the MRCI interface project
while at SAIC. He received his PhD in Information
Technology at George Mason University in 1996,
developing an instructable Modular Semi-Automated
Forces agent. He has published over 70 papers in the
areas of BML, Simulation Interoperability with Command
and Control Systems, and Multistrategy Learning.

Appendix A

Examples of basic rules of type B (basic tasks), without the wild-card Mod, for activities taken from the C2IEDM table
“action-task-activity-code” [not a complete listing]

B ! advance Tasker Taskee Route-Where Start-When (End-When) Why Label

B ! ambush Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! arrest(legal) Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! arrest(obstruct) Tasker Taskee Object At-Where Start-When (End-When) Why Label

B ! assemble Tasker Taskee Material At-Where Start-When (End-When) Why Label

B ! assist Tasker Taskee Action At-Where Start-When (End-When) Why Label

B ! attack Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! avoid Tasker Taskee Action At-Where Start-When (End-When) Why Label

B ! block Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! breach Tasker Taskee (Affected) At-Where Start-When (End-When) Why Label

B ! build-up Tasker Taskee Material At-Where Start-When (End-When) Why Label

B ! canalize Tasker Taskee Affected Route-Where Start-When (End-When) Why Label

B ! capture Tasker Taskee Material At-Where Start-When (End-When) Why Label

B ! clear(land) Tasker Taskee At-Where Start-When (End-When) Why Label

B ! clear(obstacle) Tasker Taskee Material At-Where Start-When (End-When) Why Label

B ! concentrate Tasker Taskee At-Where Start-When (End-When) Why Label

B ! conduct Tasker Taskee Affected Route-Where Start-When (End-When) Why Label

B ! confiscate Tasker Taskee Material At-Where Start-When (End-When) Why Label

B ! consolidate Tasker Taskee At-Where Start-When (End-When) Why Label

B ! constitute Tasker Taskee Object At-Where Start-When (End-When) Why Label

B ! contain Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! counter attack Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! cover Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! defeat Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! defend Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! deflect Tasker Taskee Action At-Where Start-When (End-When) Why Label

B ! demolish Tasker Taskee Affected Route-Where Start-When (End-When) Why Label

B ! deny Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! deploy Tasker Taskee At-Where Start-When (End-When) Why Label

B ! destroy Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! disengage Tasker Taskee Action At-Where Start-When (End-When) Why Label

B ! disrupt Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! distribute Tasker Taskee At-Where Start-When (End-When) Why Label

B ! escort Tasker Taskee Affected Route-Where Start-When (End-When) Why Label

B ! evacuate Tasker Taskee Object At-Where Start-When (End-When) Why Label

B ! exploit Tasker Taskee Action At-Where Start-When (End-When) Why Label

B ! fix Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! guard Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! harass Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! hide Tasker Taskee At-Where Start-When (End-When) Why Label

B ! hold defensive Tasker Taskee Facility At-Where Start-When (End-When) Why Label

B ! hold defensive Tasker Taskee Feature At-Where Start-When (End-When) Why Label

B ! hold offensive Tasker Taskee Facility At-Where Start-When (End-When) Why Label

B ! hold offensive Tasker Taskee Feature At-Where Start-When (End-When) Why Label

B ! identify Tasker Taskee Object At-Where Start-When (End-When) Why Label

B ! illuminate Tasker Taskee At-Where Start-When (End-When) Why Label

B ! infiltrate Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! isolate Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! mob up Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! march Tasker Taskee Route-Where Start-When (End-When) Why Label

Appendix A (continued)

B ! move Tasker Taskee Route-Where Start-When (End-When) Why Label

B ! observe Tasker Taskee Facility At-Where Start-When (End-When) Why Label

B ! observe Tasker Taskee Feature At-Where Start-When (End-When) Why Label

B ! occupy Tasker Taskee Facility At-Where Start-When (End-When) Why Label

B ! occupy Tasker Taskee Freature At-Where Start-When (End-When) Why Label

B ! patrol Tasker Taskee Route-Where Start-When (End-When) Why Label

B ! penetrate Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! plan Tasker Taskee Action At-Where Start-When (End-When) Why Label

B ! pursue Tasker Taskee Affected Route-Where Start-When (End-When) Why Label

B ! reconnaissance Tasker Taskee At-Where Start-When (End-When) Why Label

B ! recover Tasker Taskee Object At-Where Start-When (End-When) Why Label

B ! reinforce Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! rest Tasker Taskee At-Where Start-When (End-When) Why Label

B ! screen Tasker Taskee (Affected) At-Where Start-When (End-When) Why Label

B ! secure Tasker Taskee Facility At-Where Start-When (End-When) Why Label

B ! secure Tasker Taskee Feature At-Where Start-When (End-When) Why Label

B ! seize Tasker Taskee Facility At-Where Start-When (End-When) Why Label

B ! seize Tasker Taskee Feature At-Where Start-When (End-When) Why Label

B ! set up Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! set up Tasker Taskee Feature At-Where Start-When (End-When) Why Label

B ! set up Tasker Taskee Facility At-Where Start-When (End-When) Why Label

B ! support Tasker Taskee Affected At-Where Start-When (End-When) Why Label

B ! withdraw Tasker Taskee (Affected) Route-Where Start-When (End-When) Why Label

Examples of basic rules of type C_S (spatial co-ordinations) for control measures taken from the C2IEDM table
“control-feature-type-category-code” (not a complete listing)

C_Sp ! area of interest Tasker Taskee Start-When (End-When) Label

C_Sp ! area of operations Tasker Taskee Start-When (End-When) Label

C_Sp ! area of responsibility Tasker Taskee Start-When (End-When) Label

C_Sp ! assembly area Tasker Taskee Start-When (End-When) Label

C_Sp ! attack position Tasker Taskee Start-When (End-When) Label

C_Sp ! battle position Tasker Taskee Start-When (End-When) Label

C_Sp ! beachhead Tasker Taskee Start-When (End-When) Label

C_Sp ! bridgehead Tasker Taskee Start-When (End-When) Label

C_Sp ! check point Tasker Taskee Start-When (End-When) Label

C_Sp ! drop zone Tasker Taskee Start-When (End-When) Label

C_Sp ! hazard area Tasker Start-When (End-When) Label

C_Sp ! key terrain Tasker Start-When (End-When) Label

C_Sp ! air corridor Tasker (Taskee) Start-When (End-When) Label

C_Sp ! bomb area Tasker (Taskee) Start-When (End-When) Label

