

Adding Publish/Subscribe to the
Scripted Battle Management Language Web Service

Douglas Corner, Dr. J. Mark Pullen, Samuel Singapogu, and Bhargava Bulusu

C4I Center
George Mason University
Fairfax, VA 22030, USA

+1 703 993 3682
{dcorner, mpullen, ssingapo, bbulusu}@c4i.gmu.edu

Keywords:

Battle Management Language, Web Services, JC3IEDM

The approach to defining a coalition battle management language (BML) now being pursued by SISO requires
mapping of BML into a JC3IEDM database, which is accessed via a Web service. In previous SIW papers we have
reported on a new approach to implementing such a Web service, based on the notion of an interpreter module. This
scripting engine takes as its input the schema of the Web service and a script, coded in XML, that defines the
mappings concisely. The interpreter, which will be available as open source software, has the virtues that it is
quicker and easier to change than a hard-coded service and also requires a lower level of expertise for
development, once the interpreter has been completed. Implementing the BML server capability in a simple Web
service results in a bottleneck at the server because the clients must poll the server for updates. This paper provides
a detailed description of implementation and use of a publish/subscribe paradigm to improve performance in the
Scripted BML Web Service. The implementation uses the JBoss environment and the Java Message Service (JMS).
The paper ends with a description of the way this server was used by NATO MSG-048 in its November 2009
experimentation event and some enhancements we plan to implement as a result of that experience.

1. Overview

This paper describes how and why the Scripted Battle
Management Web Service (SBML) was extended to
provide a publish/subscribe capability, and how the result
was used in NATO MSG-048 experimentation 2009.

2. SBML Background

Battle Management Language (BML) and its various
proposed extensions are intended to facilitate
interoperation among command and control (C2) and
modeling and simulation (M&S) systems by providing a
common, agreed-to format for the exchange of
information such as orders and reports. This is
accomplished by providing a repository service that the
participating systems can use to post and retrieve
messages expressed in BML. The service is implemented
as middleware, essential to the operation of BML, and can
be either centralized or distributed. Recent
implementations have focused on use of the Extensible
Markup Language (XML) along with Web service (WS)
technology, a choice that is consistent with the Network
Centric Operations strategy currently being adopted by
the US Department of Defense and its coalition allies [1].

Experience to date in development of BML indicates that
the language will continue to grow and change. This is
likely to be true of both the BML itself and of the
underlying database representation used to implement the
BML WS. However, it also has become clear that some
aspects of BML middleware are likely to remain the same
for a considerable time, namely, the XML input structure
and the need for the BML WS to store a representation of
BML in a well-structured relational database, accessed via
the Structured Query Language (SQL). This implies an
opportunity for a re-usable system component: a Scripting
Engine, driven by a BML Schema and a Mapping File,
that accepts BML push and pull transactions and
processes them according to a script (also written in
XML). While the scripted approach may have lower
performance when compared to hard-coded
implementations, it has several advantages:
• new BML constructs can be implemented and tested

rapidly
• changes to the data model that underlies that database

can be implemented and tested rapidly
• the ability to change the service rapidly reduces cost

and facilitates prototyping
• the scripting language provides a concise definition

of BML-to-data model mappings that facilitates
review and interchange needed for collaboration and
standardization

The heart of SBML is a scripting engine, introduced in
[2], that implements a BML WS by converting BML data
into a database representation and also retrieving from the
database and generating BML as output. It could
implement any XML-based BML and any SQL-realized
underlying data model. Current SBML scripts implement
the Joint Command, Control and Consultation
Information Exchange Data Model (JC3IEDM). In the
following description, any logically consistent and
complete data model could replace JC3IEDM. Reference
[3] describes the second generation of SBML.

The current SBML implementation and scripts support
two JC3IEDM database interfaces, as shown in Figure 1:
one is a direct SQL interface, used with a MySQL
database server. The other, SIMCI_RI [4], passes java
objects through Red Hat’s Hibernate persistence service,
which performs the actual database interface function.
Version 2 implements a publish/subscribe capability,
using the Java Message Service (JMS) as implemented by
JBoss in open source (see http://www.jboss.com).
Version 2 also implements the XML Path Language
(XPATH) (see http://www.w3.org/TR/xpath), wherever a
relative path in the XML input is required.

Figure 1: SBML Configuration

The BML/JC3IEDM conversion process is accomplished
under control of the scripting language which is described
in [3].

3. Polling Interface

M&S systems generally process two kinds of messages,
orders and reports. Orders are larger and more complex
than reports, however, the frequency of reports is much
higher. For example as a military unit moves from one
position to another the M&S system may generate
updated position reports every few seconds. With the
previous release of the SBML service it was necessary for
C2 systems to poll the server to determine if updated
report information was available. This is inefficient in
several ways:
• The server must reread information that may have

just been written to the database

• The poll may retrieve no new information

• The request for each client will be processed
separately

Client applications have no way to determine what
messages might have been posted to the server since
sending the last query; they must first determine what
reports are available. Scripting was developed within the
SBML framework to retrieve a list of reports posted over
a specified period of time. It was then necessary for the
client to format a query to retrieve those messages that
might be of interest. The precision of this method turns
out to be low in that many of the messages retrieved tend
to be status reports that are then updated by later
messages in the same group. An additional problem is that
it is necessary for each client using the server to perform
this process in parallel.

The load resulting on the server from polling and the large
amount of redundant network traffic clearly is inefficient.
In this environment it was necessary for M&S systems to
limit the rate of report production so that the server was
not overloaded.

4. Publish/Subscribe Implementation

A publish subscribe capability was added to the SBML
server in order to eliminate the inefficiencies of the
polling interface. SBML runs under JBoss 4.2.3
(http://jboss.org). The messaging service provided by this
release of JBoss, JBoss Messaging or JBossMQ is an
implementation Java JMS 1.1 [6]. JBossMQ provides
both point to point messaging between two entities (JMS
Queues) and a subscription based distribution mechanism
(JMS Topics) for publishing messages to multiple
subscribers. JMS provides reliable delivery of messages
for all subscribers to a particular topic.

SBML 2.3 provides a set of preconfigured JBossMQ
Topics, which are used for the distribution of incoming
orders and periodic reports to any interested subscribers.
As BML messages are received they are processed by the
appropriate script and written to the database. The
successful completion of the transaction is an indication
that there were no errors in incoming data and that the
message can be forwarded to subscribers. There is an
XPath [7] statement (see http://www.w3.org/TR/xpath)
associated with each Topic which determines if a
particular message should be written to that Topic. If
application of the XPath statement to the message results
in non-null result the message is written to that Topic.
Note that a particular BML message may match more
than one XPath statement and therefore could be
transmitted to more than one Topic. A client then might
receive the same message more than once. The
publish/subscribe architecture is depicted in Figure 2
below.

Figure 2. Publish/Subscribe Architecture for SBML

JMS is built for the Java environment and uses Java
Remote Procedure Calls (RPC). This presents an
additional requirement for programs written in C++ (and
other languages) clients. We provide an interface for C++
users, built under the Java Native Interface (JNI)
framework. This interface works well, however it does
separate the actual client code from a direct interface with
the messaging service.

5. SBML in NATO MSG-048

The NATO Modeling and Simulation Group Technical
Activity 48 (MSG-048) was chartered in 2006 to
investigate the potential of a Coalition Battle
Management Language for multinational and NATO
interoperation of command and control systems with
modeling and simulation. The 2009 experimentation
phase of MSG-048, described in [5], was performed at
George Mason University’s Manassas, Virginia Campus
in November 2009 and included six C2 System and five
M&S systems from eight NATO nations, as shown in
Figure 3. This was the first large scale use of the SBML
Publish/Subscribe service. The service performed well
and enabled a much larger set of systems to interact as
well as increasing the precision of reports by permitting a
higher status update rate. BML messages were batched, to
reduce the impact of Web service overhead. The
processing time supported by our server for MSG-048
experiments was 50 ms per transaction.

As shown in Figure 2, the publish/subscribe we
implemented requires a client module to open a
connection to the server, which is used to transmit Web
service transactions matching the subscription. The C2
systems and simulations used by MSG-048 in 2009 were
implemented in Java and C++ languages. In order to
support publish/subscribe under the latter, we provided an
interface module made on the Java Native Interface (JNI).

Figure 3. NATO MSG-048 Experimentation

Configuration 2009

6. Publish/Subscribe Enhancements

Topics. The current implementation, SBML 2.3, the
Publish Subscribe service has the topics hard coded along
with corresponding XPath statements used for matching
messages with JMS Topics. While acceptable in a
prototyping environment, environment this necessitates
the rebuilding of the service as requirements change. We
therefore plan that, at a minimum, in the next version of
SBML the Topics will be configurable through an
external file. A more sophisticated enhancement would be
a dynamic topic capability such that clients could create a
topic in an XML message by specifying the topic name
and specifying an XPath statement, used to match against
incoming messages. The topic would then be active until
the next time the application server was restarted. Some
planning is necessary to prevent name collisions and
might be beneficial to provide for the publication of new
topics are they are created to allow sharing between
clients.

Client Language. Release 5 of JBoss is in common use
and, among other things, provides for a choice of
protocols to be used with the messaging subsystem. This
provides for a more direct interface for C++ clients.

7. Scripting Enhancements

In the process of developing the scripts described above,
we learned some lessons about how to make scripting
more practical.

7.1 Nested if-then-else construct

The logic required in scripts turns out to entail some
decisions that are not easy to encode with the single level
of if-then-else described in [3]. Therefore, we are adding
a nested if to the XML scripting. Our nested ifs mimic the
use of “curly braces” { } in progamming languages such
as Java. Thus a BO could contain:

<BusinessObjectTransaction>
 <transactionName>transName</transactionName>
 [Other BOT header elements]
 <Block>
 <SBML elements>
 </Block>
</BusinessObjectTransaction>

If statements within the top level <Block> appear as:

<ifThenElse>
 <compare>someWV</compare>
 <relation>EQ</relation>
 <literalValue>xxx</literalValue
</ifThenElse>
<Block>
 <SBML elements executed if condition was true>
</Block>
<Block>
 <SBML elements executed if condition was false>
</Block>

<Block> thus serves as the parent of all language
elements. As positive side effect of this is that formatting
the script with XML editing tools results in automatic
indentation of the elements in each block, making the
script much more readable.

7.2 Condensed Scripting Language

The XML-based script used by SBML2.3, while simple to
implement in the Web service environment, is less than
optimal for the human programmer since it suffers from
the well-known verbosity of XML. We are investigating
use of a front-end translator that can reduce the visual and
cognitive burden on the script developer by reducing the
script to a condensed representation. This is intended to
be no more nor less powerful than the XML form, since it
will translate directly into the XML form. It is intended to
be more usable in that it is easier to write and to
comprehend the working of a condensed BML script. We
are developing a compiler that will accept the condensed
BML scripting language as input and produce an XML
script as output.

Appendix 1 provides a Backus-Naur Form (BNF)
representation of the condensed scripting language. The

whole script is treated as a BusinessObjectInput that can
contain multiple instances of BusinessObjectTransaction.
Each BusinessObjectTransaction is a set of database
operations which are intended to leave the Database in a
consistent state at the end of the transaction if executed
without interleaving of other BusinessObjectTransactions
that operate on the same database tables. Each
BusinessObject is identified by a unique identifier and
may optionally include a definition of a
multivalueworkingVariable and the variable name that it
should be assigned to at every iteration of the
BusinessObjectTransaction. The definition is then
followed by a declaration of the parameters and the
Return values. The parameters are declared as an ordered
list of variables where a variable is either a string literal
enclosed in quotation marks or a String literal which maps
to a workingVariable in the XML script. Every
businessObjectTag is treated as workingVariable by the
SBML engine. The BusinessObjectTransaction thus can
contain any number of elements.

The condensed scripting language offers three ways to
retrieve from the database depending upon whether to
retrieve a row or a list of elements from a column or just
one column entry: GetRow, GetList and Get. In all three
commands, the first identifier is the table name, the
second is the column name and the third is a set of
columnReferences that constitute the where clause of the
underlying SQL statement. A Put operation is defined as a
combination of the table name and a set of
columnReferences that define the columns that need to be
updated.

To invoke the BusinessObject (BO), a Call statement can
be used to call another BusinessObjectTransaction by
specifying the name of the BO, the anchorTag, and lists
of parameters and optional return values. Conditional
statements are defined as either an IfThen or an
IfThenElse. Both statements make a logical comparision
of the identifier with the variable and conditionally
execute the statements. The Assign command can be used
to assign a variable to an identifier.

There can be multiple BOReturn statements inside a BO
and each BOReturn can have a unbounded number of the
following statements: HigherTagStart, HigherTagEnd,
Tag. HigherTagStart creates a opening tag corresponding
to the variable name that is specified and HigherTagEnd
creates a closing tag. The Tag statement can be used to
create a tag with the name specified after the first
whitespace and the value specified after the second
whitespace. This scheme allows for the creation of nested
tags and also tags dynamically named using variables.

Figure 4 illustrates this concept with a condensed-
language script. Appendix 2 contains the XML version of
the same script, which is more than four times as long..

Figure 4. Condensed script for SBML

8. Conclusions

The SBML publish/subscribe capability worked well in a
demanding environment that included a large variety of
clients and development environments. Future
enhancements of SBML should increase usability and
performance. SBML will be available as open source.

References

[1] Carey, S., M. Kleiner, M. Hieb, and R. Brown,

“Standardizing Battle Management Language – A
Vital Move Towards the Army Transformation,”
IEEE Fall Simulation Interoperability Workshop,
Orlando, FL, 2001

 [2] Pullen, J., D. Corner and S. Singapogu, “Scripted
Battle Management Language Web Service Version
1.0: Operation and Mapping Description Language,”
IEEE Spring 2009 Simulation Interoperability
Workshop, San Diego CA, 2009

 [3] Pullen, J., D. Corner and S. Singapogu, “Scripted
Battle Management Language Web Service Version
2,” IEEE Fall 2009 Simulation Interoperability
Workshop, Orlando, FL, 2009

[4] Levine, S., L. Topor, T. Troccola, and J. Pullen, “A

Practical Example of the Integration of Simulations,
Battle Command, and Modern Technology,” IEEE
European Simulation Interoperability Workshop,
Istanbul, Turkey, 2009

[5] Pullen, J. et al., “An Expanded C2-Simulation

Experimental Environment Based on BML,” IEEE
Spring Simulation Interoperability Workshop,
Orlando, FL, 2010

[6] Sun Microsystems, “JAVA Message Service 1.1”

April 12, 2002.

[7] World Wide Web Consortium, “XPath Language

Version 1.0”, November 16, 1999

Author Biographies

DR. J. MARK PULLEN is Professor of Computer
Science at George Mason University, where he serves as
Director of the C4I Center and also heads the Center’s
Networking and Simulation Laboratory. He has served as
Principal Investigator of the XBML and JBML projects.

DOUGLAS CORNER is a member of the staff of the
George Mason University C4I Center. He is the lead
software developer on the SBML scripting engine.

SAMUEL SINGAPOGU is a member of the staff of the
George Mason University C4I Center. He is the lead
script developer on the SBML scripting engine.

BHARGAVA BULUSU is a member of the staff of the
George Mason University C4I Center. He is a script
developer on the SBML scripting engine.

BOInput
{
 BOTransaction WhatWhenPush(...
 {
 //fragment from WhatWhenPush
 Call TaskeeWhoPush TaskeeWho (task_act_id) () ;
 ...
 }

BOTransaction TaskeeWhoPush (task_act_id) ()
{
 GET unit unit_id (formal_abbrd_name_txt EQ UnitID);
 PUT act_res (

act_id EQ task_act_id,
act_res_index EQI act_res_index, cat_code EQ "RI",
authorising_org_id EQ unit_id) ;

 PUT act_res_item (
act_id EQ task_act_id,
act_res_index EQ act_res_index,

 obj_item_id EQ unit_id) ;
 BOReturn
 {
 BOReturnElement
 {
 Tag Result "OK";
 }
 }
}

Appendix 1: BNF Representation of Condensed Scripting Language

<BOInput> ::= BOInput { <BOTransaction> [<BOInput>] | }

<BOTransaction> ::= BOTransaction <identifier> [mvwv=<identifier>,assignTo=<identifier>][iterator=<identifier>]
(<parameterList>)([parameterList]){ <BOTTransactionElements> }

<BOTTransactionElements> ::= <BOTTransactionElements><BOTTransactionElement> <BOReturnElements> ;

<BOTTransactionElement> ::= <getRow>
 | <getList>
 | <getColumn>
 | <put>
 | <call>
 | <conditional>
 | <assign>
 | <singleStatement>
 | <abort>
 | <BoReturn>
 | <comment> | Debug; | Commit;

<columnReference> ::= <identifier> <relation> <variable> [,<columnReference>]

<parameterList> ::= <variable> [, <parameterList>] | ;

<literalValue> ::= "<identifier>"

<relation> ::= EQ|NE|GT|LT|GE|LE|EQI

<variable> ::=<literalValue>|<identifier>

<getRow> ::= GetRow <identifier> <identifier> (<columnReference>) ;

<getList> ::= GetList <identifier> <identifier> (<columnReference>) ;

<getColumn> ::= Get <identifier> <identifier> (<columnReference>) ;

<put> ::= Put <identifier> (<columnReference>) ;

<call> ::= Call <identifier> <identifier> (<parameterList>)([parameterList]) ;

<conditional> ::= <ifThen> | <ifThenElse>

<ifThen> ::= IfThen(<identifier><relation><variable>) { <BOTTransactionElements> }

<ifThenElse> ::= IfThenElse(<identifier><relation><variable>) { <BOTTransactionElements> }
 { <BOTTransactionElements> }

<assign> ::= Assign <identifier> <variable>

<abort> ::= Abort <literalValue>;

<BOReturn> ::= BOReturn { <multipleBOReturnElements>

<multipleBOReturnElements> ::= <multipleBOReturnElements> <BOReturnElement> }

<BOReturnElements> ::= BOReturnElement { <BOReturnElements> | }

<BOReturn> ::= BOReturn { <multipleBOReturnElements>

<BOReturnElement> ::= BOReturnElement HigherTagStart <variable>;
 | BOReturnElement HigherTagEnd <variable>;
 | BOReturnElementTag <literalValue> <identifier>;
 | ;

<Identifier> ::= <lowerCaseAndOtherCharacters>[<Identifier>] | <upperCaseCharacter>[<Identifier>]

<lowerCaseAndOtherCharacters > ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|->|0|1|2|3|4|5|6|7|8|9|.

<upperCaseCharacter> ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

<comment> ::= // “… text …”

NOTE: Whitespace (any number of blanks and carriage returns) is the delimiter, unless other delimiter is indicated.

Appendix 2: XML Script Example

<?xml version="1.0" encoding="UTF-8"?>
<BusinessObjectInput xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="BusinessObjectTransactionInterpreterSchema.v0.18.xsd">
<!-- Fragment of code from WhatWhenPush -->
 <call>
 <boName>TaskeeWhoPush</boName>
 <anchorTag>TaskeeWho</anchorTag>
 <parameter>
 <workingVariable>task_act_id</workingVariable>
 </parameter>
 </call>
. . .
 <BusinessObjectTransaction>
 <transactionName>TaskeeWhoPush</transactionName>
 <parameter>task_act_id</parameter>
 <tableQuery>
 <databaseTable>unit</databaseTable>
 <queryAction>GET</queryAction>
 <resultName>unit_id</resultName>
 <columnReference>
 <columnName>formal_abbrd_name_txt</columnName>
 <businessObjectTag>UnitID</businessObjectTag>
 </columnReference>
 </tableQuery>
 <tableQuery>
 <databaseTable>act_res</databaseTable>
 <queryAction>PUT</queryAction>
 <columnReference>
 <columnName>act_id</columnName>
 <workingVariable>task_act_id</workingVariable>
 </columnReference>
 <columnReference>
 <columnName>act_res_index</columnName>
 <workingVariable increment="Yes">act_res_index</workingVariable>
 </columnReference>
 <columnReference>
 <columnName>cat_code</columnName>
 <literalValue>RI</literalValue>
 </columnReference>
 <columnReference>
 <columnName>authorising_org_id</columnName>
 <workingVariable>unit_id</workingVariable>
 </columnReference>
 </tableQuery>
 <tableQuery>
 <databaseTable>act_res_item</databaseTable>
 <queryAction>PUT</queryAction>
 <columnReference>
 <columnName>act_id</columnName>
 <workingVariable>task_act_id</workingVariable>
 </columnReference>
 <columnReference>
 <columnName>act_res_index</columnName>
 <workingVariable>act_res_index</workingVariable>
 </columnReference>
 <columnReference>
 <columnName>obj_item_id</columnName>
 <workingVariable>unit_id</workingVariable>
 </columnReference>
 </tableQuery>
 <BusinessObjectReturn >
 <BusinessObjectReturnElement>
 <tag>Result</tag>
 <literalValue>OK</literalValue>
 </BusinessObjectReturnElement>
 </BusinessObjectReturn>
 </BusinessObjectTransaction>
</BusinessObjectInput>

