Report on implementing “Complete Thoughts” in SBML
Author: Samuel Singapogu

Introduction: Battle Management Language (BML) and its various extensions are intended to
facilitate interoperation among Command and Control(C2) and Modeling and Simulation (M&S)
systems by providing a common, agreed-to format for the exchange of information such as orders and
Reports. This is accomplished by providing a repository service that the participating systems can use
to post and retrieve messages expressed in BML. The service is implemented as middleware, essential
to the operation of BML. Recent implementations have focused on the use of Extensible Markup
Language (XML) and Web Service (WS) technology consistent with the Network centric operations
strategy currently being adopted by the US department of defense and its coalition allies.

Scripted BML (SBML) is a scripting engine that implements a BML WS by converting BML data into
a database representation and also retrieving from the database and generating BML as output. The
BML/JC3IEDM conversion process is accomplished under the control of the scripting language. The
SBML service is driven by elements of the BML that are individually processed by the script. These
elements are XML aggregates known as BusinessObjects (BO).

A databaseQuery is used for reading from or writing to the database. There are XML tags to denote the
name of the database table, the column to be retrieved, the columns to be written etc. (For full
description of the SBML and the structure of database queries please see references at the end of this
document. Additionally, since there is often a need to perform data manipulation, SBML allows for the
creation of “workingVariables” to store user data. A working variable can store a scalar string, a row of
values, and a List of rows/scalars.

SBML allows users to use conditional statements to perform data manipulation and database queries.
Users can also call other BusinessObjects and SubRoutines in the script (more on this later in the
document). SBML also facilitates the creation of output BML documents using Business Object
returns. There is flexibility to create tag names on the fly, loop through a set of values and other
necessary characteristics for XML document creation.

SBML has shown great potential as a basis for rapid development of supporting services for BML. It
has been used in the annual NATO experimentation group to test and support interoperability within
multiple C2 and M&S systems.

The need to think about Complete Thoughts came when we were working with the JC3IEDM
Reference Implementation in association with Northrop Grumman. We realized that the Reference
Implementation expects for some Business Objects (like Control Feature) that all the necessary tables
and columns be updated before the transaction can be completed. It became evident that SBML needed
a similar paradigm to work in tandem. I was part of the team of discussion that realized that a Business
Object Transaction provides a framework to represent a Complete Thought. The rest of this document
reports on the issue of “Complete Thought” and how SBML implements it.

Complete Thought: JC3IEDM-Annex O-XML-DMWG-Edition_3.0.2_20090514 defines a Complete
Thought as a update or a query that constitutes a complete military thought. The document also
suggests that a “Complete Thought” can be thought of as a Business Object. So, when it translates into
SBML, a Complete Thought contains 'databaseQuery's that update all the mandatory elements to



complete the military thought and keep the database in a consistent state. We have noticed that
Simulation systems that are subscribed to different '‘Complete Thoughts' receive the updates as they are
pushed to the Database using SBML. As an example consider WhatWhen as a Complete Thought:

The root element for WhatWhen is Action-Task. And the columns that need to be updated are
illustrated in the figure 1.a.

ActionTask

Action-task-id > action-task-id

action-task-category-code = [C_BML:WhatWhen/C_BML:ActionTask]
action-task-start-datetime =
C_BML:WhatWhen/CBML:AbsoluteStartWhen/C_BML:StartDatetime]
action-task-start-qualifier-code = [C_BML:WhatWhen/C-
BML:AbsoluteStartWhen/StartQualifierCode]
action-task-end-datetime = [C_ BML:WhatWhen/C-
BML:AbsoluteEndWhen/EndDatetime]

action-task-end-qualifier-code = [C_BML:WhatWhen/C-
BML:AbsoluteEndWhen/EndQualifierCode]

(Fig 1.a) : Figure illustrating the IDFX (slightly modified- please see notes below)
representation for the Complete Thought 'WhatWhen'

Notes on the representation above:
1) The Tableb name and the column names are in bold.
2) If the value to be put in the column is from the input file then that is represented using [].
3) Actio-Task-id is the primary key for the Complete Thought and it is created as a new value
using the '>" operator.

Action task is a child entity of Action and so the creation of Action-Task involves the implicit creation
of Action in the Database. The End time is optional in the input BML (as of Oct 2010) and SBML does
not update the relevant columns if the input file does not have the optional values.

The mandatory columns are the primary key (Action-task-id), the Category Code, the Start Date Time
and the StartTimeQualifier which are updated in this Buisness Object which makes it a complete
military thought. Updating the Database using the above figure will result in a consistent Database
snapshot and any retrieval of these set of data will make complete military sense for this Business
Object.

Use of Business Objects for Complete Thoughts: In SBML, Business Objects are used to represent a
set of Database queries (Gets and/or puts). This allows for a modular view of scripting which even
helps in debugging and isolation of errors. SBML also allows for the creation of Sub Routines (using
the keyword ROUTINE indead of BusinessObject) which have the same structure as Business Objects
but do not allow the definition of <ri_start> and <ri_end>. This is done to separate the ideas of
Business Objects and helper methods. For example, a AtWhere (CONTROL-FEATURE) and as such
should be defined in a Business Object while any necessary reusable set of database queries should be
defined in sub-routines. This is recommend use of Business Objects and Sub-routines. The following



figure (fig 1.b) is intended to illustrate the above principle.

Business Object

AtWherePush ROUTINE LinePush
//different database //database queries
queries

Call LinePush() ();

Call PointPush() ();

ROUTINE PointPush

//database queries

(fig 1.b) Figure illustrating the use of Business Objects and Routines in Complete Thoughts.

Complete Thoughts in SBML: In SBML, Complete Thoughts are perceived still as a collection of
database queries that are all anchored on a root table. Therefore, there needs to be a way to designate
the start of the Complete Thought, the root table and the end of the Complete Thought.

The start of a Complete Thought and the root table can be represented using:

<ri_start table="" key="">

The 'key' specifies the primary key of the root table.

The end of the Complete Thought can be represented using:

<ri_end>

Within, the start and end of SBML allows databaseQueries.

Business Object Transactions being implicit Complete Thoughts:



SBML facilitates the representation of Complete Thoughts using Business Object Transaction (BOT).
BOT's are the basis for molecularity in SBML- they represent a collection of data base queries and they
can be called from other BOT's thus achieving re usability. A Complete Thought in the JC3IEDM
reference implementation also has the property of being a collection of related and mandatory database
operations. Therefore a BOT can be the representation of a Complete Thought in SBML. Additionally,
SBML also has the command “commit” (works the same way a SQL commit works) that will push all
recent database operations to the database. In this way, a script can, conceivably, have all database
operations for a Control Feature Push and at the BOT have the commit statement. This takes away the
need for <ri_start> and <ri_end>. In essence, a BOT has a implicit <ri_start> and <ri_end> since the
collection of database operations are all done simultaneously.

Contrasting Business Object Transactions with Sub-routines.

There are often a collection of tables that need to be updated that do not account towards a Complete
Thought (e.g. creation of a Point). Additionally, there are also a collection of tables that need to be
updated together and often. To facilitate the representation of a re-usable collection of databaseQueries
which do not form a Complete Thought, SBML has the notion of a sub-routine. Sub Routines can be
created by the <Routine> tag (and ROUTINE keyword in CSL). A Sub routine can contain all the
elements of a Business Object Transaction except <ri_start> and <ri_end>.

Routines are designed to (as the name suggests) to have useful pieces of script that can be called
repeatedly without having to create Complete Thoughts.

As an example:

A Control-Feature has been identified as a Complete Thought which means that when a Control
Feature needs to be created there are a set of tables (and columns) that all need to be updated and the
database consistency needs to be maintained. And so the script needs to create a
BusinessObjectTransaction for the Control feature Push. A Control Feature can have multiple points
and each Point has about ten tables that need to be updated. So, a Routine can be created for a Point
Push which can be called from Control Feature Push (or other Business Object Transaction). In this
way, the Business Object Transaction can use the helper sub routines but the engine knows that since its
a Business Object Transaction a Complete Thought is created.

Notes: As of now the only element that we know as a Complete Thought is a Control feature. The
analysis here looks for all the tables that are needed to update the element in the JC3IEDM.

The following illustrates the possible Complete Thoughts in SBML Orders and the relevant Root Nodes
and Primary Keys

1) Order:
Root Table: REF
<ri_start table="REF Key="ref_id”>

Tables that are needed to perform a OrderPush are:
ACT, REF, ACT_TASK,ACT_REF_ASSOC, ORG_ACT_ASSOC

Name of the BOT:LowerOrderPush



2) Task (What+When)
Root Table: ACTION-TASK, primary key: action-task-id
Tables needed to perform a Task Push are: ACT, ACT_FUNCTL_ASSOC, ACT_RES
Name of the BOT:WhatWhenPush
Questions/Points to consider: Since Tasks can have both WhenTime and relativeWhen, the BOT right
now checks if there are RelativeWhens and calls other BOT's for each relative When. Each of those

BOT's update the tables ACT_TASK and ACT_TEMPRL_ASSOC. So, WhatWhenPush is not a
Complete Thought until the RelativeWhen's are done in another Routine.

3) Where
RootTable: 'ControlFeature’ or 'Route’ depending upon whether it is a Route or not.

Tables needed to perform a AtWherePush:
OBIJ_ITEM,FEAT,CTRL_FEAT,CTRL_FEAT,OBJ_TYPE,FEAT_TYPE, CTRL_FEAT_TYPE,
OBJ_ITEM_TYPE, LOC, OBJ_ITEM_LOC,
If it is a ControlMeasure does CONTXT_OI_ASSOC if not it does ACT_OBJVE and
ACT_OBJVE_ITEM
Name of the BOT: AtWherePush calls BOT's: SurfacePush, which in turn calls
LinePush : LINE, POLYGON_AREA (if the 'WhereClass' is a'SURFAC") which in turn calls

PointPush (for as many 'Locations' there are in the input file: LOC, POINT, VER_DIST, ABS_POINT,
GEO_POINT, LINE POINT

Notes:
1) The <ri_end> has to be at the end of AtWherePush but since PointPush uses information from
LinePush, we'll need to make sure that tables from LinePush are pushed before PointPush. Will we
need a ri_start and ri_end in LinePush
4) Who
a) TaskeeWho:
Name of the BOT: TaskeeWhoPush- called by WhatWhenPush
Tables: ACT_RES_ITEM

Questions/Points to consider: The table ACT_RES is created in WhatWhenPush and
ACT_RES_ITEM is created in TaskeeWhoPush. Will this cause a problem ?



b) AffectedWhoPush:
Name of the BOT: AffectedWhoPush- called by AffectedWhoPush

Tables: ACT_OBJVE and ACT_OBJVE_ITEM

5) Why
Name of the BOT : WhyPush- called by WhatWhenPush
Tables: ACT _EFFECT : uses the act_id of the Task

6) NewWho
Root Element: Unit, primary key= unit_id

Tables: UNIT, OBJ_ITEM, ORG, OBJ_TYPE, UNIT_TYPE, ORG_TYPE, GOVT_ORG_TYPE,
MIL_ORG_TYPE, OBJ_ITEM_TYPE

If there is a Location then it calls NewWhoAtWherePush that pushes the Location as a Control feature
Conclusions:

1) SBML facilitates the creation of Complete Thoughts using Business Object Transactions. They have
a implicit <ri_start> at the beginning and a <ri_end> at the end. Sub-routines can be created to have
helper groups of database queries. Sub Routines can be called from Business Object Transactions.

Notes on W's and their relationship to Complete Thoughts

1) A task is not complete without all five W's but there are tables like ACT, ACT_FUNCTL_ASSOC,
ACT_RES that need to be pushed to provide the “skeleton” of the ActionTask that the other W's can
use to update JC3IEDM tables. A task does not really have a Root element and so we cannot use a
ri_start and ri_end for it. Since the BOT's that do the W Push need the “skeleton” tables, we should
make sure they are pushed into the Database before going to the W Push

1) For a Control feature, since there can be multiple points we need to call the BOT PointPush for each
Point. This can be treated as a Sub-routine and having a ri_start at the start of AtWherePush and a
ri_end at the end of AtWherePush will make AtWherePush a “Complete Thought”
3) For all the W's every table that is necessary to perform a valid composite is being updated.
Every needed column is also being updated.

References:



Pullen, J., D. Corner and S. Singapogu, “Scripted Battle Management Language Web
Service Version 1.0: Operation and Mapping Description Language,” IEEE Spring 2009

Simulation Interoperability Workshop, San Diego CA, 2009

Pullen, J., D. Corner and S. Singapogu, “Scripted Battle Management Language Web
Service Version 2,” IEEE Fall 2009 Simulation InteroperabilityWorkshop, Orlando, FL,

2009

Dr. Mark Pullen, Douglas Corner, Samuel Singapogu, Bhargava Bulusu, and
Mohammad Ababneh, “Implementing a Condensed Scripting Language in the Scripted
Battle Management Language Web Service”, IEEE/SISO Simulation Interoperability

Workshop, 2010

Dr. Mark Pullen, Douglas Corner, Samuel Singapogu, et al., “Adding Reports to
Coalition Battle Management Language for NATO MSG-048”, IEEE/SISO Simulation

Interoperability Workshop, 2009

Blais, C., Brown, D., Diallo, S., Heffner, K., Levine, S., Singapogu, S., St-Onge, M., and
Scolaro, D.: “Coalition Battle Management Language (C-BML) Phase 1 Specification
Development: An Update the M&S Community,” Paper 09F-SIW-001, Proceedings of
the Fall Simulation Interoperability Workshop, Simulation Interoperability Standards

Organization, Orlando, September 2009.



