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Abstract. Service Oriented Architecture (SOA) is a key technology to support 
interoperability among data and processing resources. Semantic interoperability 
requires mapping between vocabularies of independently developed  resources,  
a task fraught with uncertainty. Probabilistic ontologies enable representation of 
knowledge in domains characterized by uncertainty. As such, they promise to 
improve the quality of service descriptions, enable more thorough analysis of 
service composition opportunities, and provide a theoretically sound methodol-
ogy for semantic mapping under uncertainty. This paper defines probabilistic 
ontologies, discusses their application to SOA, and presents a conceptual 
scheme for using a federation of ontologies (with both common and probabilis-
tic ontologies) as a semantic mapping tool for service oriented information ex-
change systems with different levels of service descriptions (including legacy 
and probabilistic enabled descriptions). 

1   Semantic Interoperability in the Semantic Web and Service 
Oriented Architecture Frameworks 

A fundamental tenet of the Semantic Web (SW) vision is that adding semantics to 
web resources can spark a paradigm shift from information-based data exchange to 
knowledge-based data-exchange. HTML syntax hard-codes a limited single-purpose 
set of semantic categories. In contrast, the Semantic Web envisions resources anno-
tated with well-defined, explicitly represented semantics that provides the basis for 
rich description and reasoning. Explicit semantics is essential for appropriate process-
ing of syntactically identical but semantically different terms (e.g., “Washington” the 
President, the city, or the football team).  Ontologies, or shared repositories of pre-
cisely defined concepts expressed in standardized languages, are a vital tool for ena-
bling semantic interoperability among web resources. Thus, ontologies are a means 
for transforming the current “Web of shared data” into a “Web of shared knowledge.” 



A traditional ontology can at best list multiple possible senses for a word such as 
“Washington,” with no ability to grade their relative plausibility in a given context. 
This may be sufficient in tightly controlled environments in which a limited set of 
allowable usages of each term can be strictly enforced. However, this approach 
cannot be used in an open world where incomplete information is the rule and little 
control over ontology publishers is feasible. For this reason, traditional ontologies are 
inadequate for unambiguous semantic matching of independently defined concepts. 
To fill that gap, probabilistic ontologies are proposed as a means to extend common 
ontologies, enabling a principled representation of uncertainty and promoting a means 
to represent the relative plausibility of a specific meaning of a concept based on the 
context in which it is used. 

In parallel with the Semantic Web efforts, Service Oriented Architecture (SOA) 
has become the leading approach for accessing and using distributed resources devel-
oped by independent entities and working with independently developed vocabularies 
and associated semantics.  The advent of SOA marks a transformation from a mostly 
data-driven Web, with little interaction between requesters and providers of informa-
tion, into an environment in which information and other resources are accessed and 
used in a much more dynamic, interactive, and unpredictable fashion.  

The supporting technology for the SOA model is composed of XML-based stan-
dards and protocols focused on providing a shared understanding of the available 
services. Currently, accepted standards for developing solutions based on Web 
Services (the most prevalent implementation of SOA) include SOAP, a message 
structure used for exchanging XML serializations of content and message handling 
instructions in a decentralized, distributed environment [1], and the Web Services 
Description Language (WSDL), which represents messages exchanged when invok-
ing a Web Service [2]. However, these XML-based structures do not have the ability 
to explicitly formalize the underlying semantics of a given Web Service description, 
rendering them insufficient to ensure a common understanding of the described Web 
Service. As pointed out by Paolucci et al. [3], two identical XML descriptions may 
have different meanings depending on who uses them and when. Because it is unreal-
istic to expect that all providers and consumers will have equivalent perspectives and 
knowledge regarding a given service, a common understanding of a given Web Serv-
ice can be reached only at the semantic level, where the different perspectives and 
knowledge can be matched. 

Not surprisingly, the need for semantic-aware resource descriptions is widely rec-
ognized, and is being addressed by research focused on enabling Web Service provid-
ers to describe the properties and capabilities of their Web Services in unambiguous, 
computer-interpretable form (e.g.,  OWL-S [4], WSMO [5], SWSL [6], SAWSDL 
[7], and WSDL-S [8]).  

This paper argues that progress on both SW and SOA is hampered by the lack of 
support for uncertainty in common ontology formalisms. We postulate that probabilis-
tic ontologies can fill a key gap in semantic matching technology, thus facilitating 
widespread usage of Web Services for efficient resource sharing in open and distrib-
uted environments. We begin with a general definition of a probabilistic ontology. 
Next, we present PR-OWL, a language for defining probabilistic ontologies. Finally, 
we explore possible use cases for applying probabilistic ontologies in a Service 
Oriented Architecture. 



2   Common vs. Probabilistic Ontologies 

Since its adoption in the field of Information Systems, the term ontology has been 
given many different definitions. A common underlying assumption is that the formal 
foundation for knowledge representation and reasoning would be classical logic. We 
argue that first-order probabilistic logic is a more appropriate foundation. 

The de facto standard for developing ontologies geared to the Semantic Web is 
OWL, a W3C recommendation [8]. OWL has its roots in its own web language 
predecessors (i.e. XML, RDF), and in traditional knowledge representation formal-
isms that have historically not considered uncertainty. Examples of these formalisms 
include Frame systems [10] and Description Logics, which evolved from the so-called 
“Structured Inheritance Networks” [11]. This historical background somewhat ex-
plains the lack of support for uncertainty in OWL, a serious limitation for a language 
expected to support applications in uncertainty-laden domains such as genetics or 
medicine. In fact, virtually all current ontology formalisms are based on classical 
logic, and SW languages such as OWL provide no consistent support for uncertainty 
representation or plausible reasoning. 

This lack of support for uncertainty can be justified in closed systems designed to 
perform well-defined tasks, for which clear and unambiguous vocabularies can be 
constructed. But the Semantic Web vision requires heterogeneous systems to interop-
erate in an open world. Inevitably, vocabularies that are adequate for a single stand-
alone application break down when required to interoperate with systems employing 
different vocabularies originally tailored to different tasks.  Inevitably, there is in-
complete and partial overlap of terminology and concepts. Even when concepts are 
clearly defined, in an open-world system available inputs may be insufficient to de-
termine which meaning is most appropriate.  For example, a standard ontology might 
enumerate different senses for the word “Washington,” such as the United States as 
an agent, the first President of the United States, a state in the Pacific Northwest, or a 
football team. Semantic Web applications employing the ontology must identify 
which of these senses is most appropriate in a given context, e.g., when the word is 
embedded in the sentence, “Washington voiced strong objections to the proposed 
policy,” extracted from a book about the American revolution, or alternatively, from a 
newspaper story about a recent United Nations debate. As another example, the de-
velopers of an ontology for military planning [12] identified over a dozen different 
doctrinal uses of the word “clear” within the United States Department of Defense 
[13]. In complex open-world problems, legislating unambiguous usage is often infea-
sible. Several items of evidence in combination may be required to disambiguate 
among different meanings of a given term.  Evidential reasoners require information 
about the strength of association between items of evidence and the conclusions to 
which they point, as well as contextual factors that affect the strength of evidence. 

We argue that the ontology layer is the appropriate place in the Semantic Web ar-
chitecture for representing declarative knowledge about likelihood. That is, in envi-
ronments in which noisy and incomplete information is the rule, likelihood informa-
tion is a key aspect of domain knowledge, and should be included in formal domain 
ontologies. A counter-argument has been made that probability (with the possible 
exception of  quantum phenomena) is epistemic, but formal ontology should represent 



phenomena and relationships as they exist in the world (e.g. [14]). Carried to its ex-
treme, however, this philosophical stance would preclude the use of virtually every 
ontology that has yet been developed.  To explore this idea further, we note that if 
computational ontologies had existed in the 17th century, Becher and his followers 
might well have developed an ontology of phlogiston1. We may chuckle now at their 
naïveté, but who among our 17th century predecessors had the foresight to judge 
which of the many scientific theories then in circulation would stand the test of time?  
Researchers in medicine, biology, defense, astronomy, and other communities have 
developed a plethora of domain ontologies. It is virtually certain that at least some 
aspects of some of these ontologies will turn out in retrospect to be as well founded as 
the theory of phlogiston.  Shall we outlaw use of all these ontologies until the day we 
can prove they contain only that which is ontological, and nothing that is mere epis-
temology? We take the pragmatic stance that although our ultimate objective is to 
seek the truth about Reality as it is, full knowledge is unattainable in the lifetime of 
any human.  Nevertheless, it is necessary and desirable to do the best we can with the 
knowledge we have.  To represent our knowledge as certain when it is uncertain can 
produce erroneous results.  Formal ontology provides a means to communicate do-
main knowledge in a precise and interoperable manner, and to extend and revise our 
descriptions as human knowledge accrues. To do this in a sound and principled man-
ner requires a sound and principled way to represent, communicate, and reason with 
uncertainty. Probabilistic ontologies provide a means of doing so. 

Not surprisingly, as ontology engineering research has achieved a greater level of 
maturity, the need for representing uncertainty in ontologies in a principled way has 
become more and more clear. There is increasing interest in extending traditional 
ontology formalisms to include sound mechanisms for representing and reasoning 
with uncertainty. 

Although interest in probabilistic ontologies has been growing, there is as yet no 
commonly accepted formal definition of the term. Over the past several decades, 
semantically rich and computationally efficient formalisms have emerged for repre-
senting and reasoning with probabilistic knowledge (e.g., [15-16]). Building upon the 
advances in this area, we have adopted a formal definition based on the core notion 
that a probabilistic ontology formalism should provide the means to express all rele-
vant uncertainties about the entities and relationships that exist in a domain in a logi-
cally coherent manner. This would not only provide a consistent representation of 
uncertain knowledge that can be reused by different probabilistic systems, but would 
also allow applications to perform plausible reasoning with that knowledge.  

Definition 1 (from [17]): A probabilistic ontology (PO) is an explicit, formal knowl-
edge representation that expresses knowledge about a domain of application. This 
includes:  
• Types of entities that exist in the domain;  
• Properties of those entities;  
• Relationships among entities;  
• Processes and events that happen with those entities;  

                                                             
1 Phlogisten is a hypothetical substance once thought to be contained in flammable materials 

and released in combustion. Becher’s theory of phlogiston was dominant until Lavoisier 
proved that combustion requires oxygen. 



• Statistical regularities that characterize the domain;  
• Inconclusive, ambiguous, incomplete, unreliable, and dissonant knowledge 

related to entities of the domain; and 
• Uncertainty about all the above forms of knowledge;  

where the term entity refers to any concept (real or fictitious, concrete or abstract) 
that can be described and reasoned about within the domain of application.  

Probabilistic ontologies are used for the purpose of comprehensively describing 
knowledge about a domain and the uncertainty associated with that knowledge in a 
principled, structured and sharable way, ideally in a format that can be read and proc-
essed by a computer. They also expand the possibilities of standard ontologies by 
providing a means of representing the statistical regularities and the uncertain evi-
dence about entities in a domain of application.  

It is important to emphasize that a probabilistic ontology is not a probabilistic 
model (e.g. a model built using applications such as Netica, Hugin, or Quiddity), just 
as an ontology is not a database application. Ontologies and database schemas are 
sometimes confused because they are expressed using similar formalisms. The 
difference between them resides in their respective intended purposes. Ontologies 
represent domains in a way that should facilitate interoperability with other represen-
tations of that domain (i.e. other ontologies built by different people with different 
views and interests) or of domains that are not directly related but share some con-
cepts. When a database solution for a given domain is conceived, its primary focus is 
not in representing all concepts of a domain in a way that makes it interoperable with 
current or future views of that domain, but in defining the concepts in a way that 
facilitates storage and retrieval of the information the database stakeholders (and their 
customers) want to store and retrieve, in a way that best fits their requirements. 

In a similar vein, when a probabilistic model is built to solve, e.g., a radar data fu-
sion problem, the main interest driving its creators is not in making sure that their 
definitions about radar domain concepts are interoperable with other definitions that 
might exist for those same concepts. In contrast, interoperability would definitely be a 
primary focus when building a probabilistic ontology for the domain of radar data 
fusion. Ontology engineers would attempt to express one view of that domain in a 
way that others (with possibly different views) may use/understand and thus build 
applications (databases, decision systems, etc) that are compatible with anything built 
under that view. 

Furthermore, it is not necessary for an ontology to be a running database, yet a da-
tabase application can be built on top of an ontology. Likewise, a probabilistic ontol-
ogy does not necessarily need to be a running probabilistic model, yet a running prob-
abilistic model (i.e. an executable application built using a probabilistic package) can 
be built on top of a probabilistic ontology if that fits the objectives of the application 
at hand. A subtle difference here is that anything built on top of a traditional ontology 
can be built on top of a probabilistic ontology, but the converse is not always true, 
since the latter is an extension of the former that adds the above mentioned features of 
a probabilistic framework. 

As a means to develop probabilistic ontologies that might be used in a framework 
for semantic matching of Web Services, we are using and developing PR-OWL [17, 
18], an extension that enables OWL ontologies to represent Bayesian probabilistic 



models in a way that is flexible enough to be used by diverse Bayesian probabilistic 
tools based on different probabilistic technologies. That level of flexibility can only 
be achieved using the underlying semantics of first-order Bayesian logic [15], which 
is not a part of the standard OWL semantics and abstract syntax. Therefore, it seems 
clear that PR-OWL can only be realized by extending the semantics and abstract 
syntax of OWL. However, in order to make use of those extensions, it is necessary to 
develop new tools supporting the extended syntax and implied semantics of each 
extension. Such an effort would require commitment from diverse developers and 
workgroups, which falls outside our present scope. 

The major advantages of using PR-OWL are its flexibility and representational 
power, both inherited from the fact that the language is based on MEBN, a full inte-
gration of first-order logic and probability that merges the expressiveness of the 
former with the inferential power of the latter. MEBN provides: (1) a means of ex-
pressing a globally consistent joint distribution over models of any consistent, finitely 
axiomatizable FOL theory; (2) a proof theory capable of identifying inconsistent 
theories in finitely many steps and converging to correct responses to probabilistic 
queries; and (3) a built in mechanism for adding sequences of new axioms and refin-
ing theories in the light of observations. Thus, any knowledge can be represented in 
MEBN, provided it can be represented in FOL. Furthermore, because MEBN is a first 
order Bayesian logic, using it as the underlying semantics of PR-OWL not only guar-
antees a formal mathematical foundation for a probabilistic extension to the OWL 
language (PR-OWL), but also ensures that the advantages of Bayesian Inference (e.g. 
natural “Occam’s Razor”, support for learning from data, etc.) will accrue to PR-
OWL probabilistic ontologies. A comprehensive explanation of MEBN logic is out-
side the scope of this work, but the interested reader is directed to [15], [19]. 

3   The Role of Probabilistic Ontologies in SOA 

In order to envision the applicability of POs in SOAs, it is necessary to first under-
stand what kind of uncertainties might be present in a service-oriented environment. 
SOA, as defined in its reference model [20], is a paradigm for bringing together needs 
and capabilities to address those needs. It requires establishing an execution context 
(EC), which is an alignment of all technical and policy-related aspects, including 
vocabularies, protocols, licensing, quality of service (QoS), etc. Much of this specific 
information is contained in or linked to the service description and/or the description 
of underlying capabilities. Considering the complexity involved,  many forms of 
uncertainty can be present within a given execution context. For example, uncertainty 
may arise in the description content (e.g. information annotated with its source but 
there is no way to verify whether the identity of the source is correct), in the way 
information is captured as part of a description (e.g. information annotated with its 
respective source but with no indication of whether it is raw or processed data), or in 
the applicability of information to current need (e.g., information on recording 
equipment that does not indicate whether the recorded data fall within a reasonable 
range for the recording conditions). An ontology that represents statistical information 
can enable a reasoner to draw inferences about the missing information. For example, 



consider a report that a device has recorded an ambient temperature of 5 degrees 
Celsius at Rio de Janeiro's Tom Jobin International Airport (GIG) on 23 January. This 
is a highly unlikely, but not impossible, temperature reading for January near Rio. 
Statistical information about climate, sensor reliability, and data recording error rates, 
if represented in the relevant domain ontologies, could be used to draw inferences 
about the about the likely temperature at GIG on 23 January that appropriately ac-
count for the possibility of various kinds of error. This example illustrates the need for 
a principled representation of uncertainty in service descriptions, a feature not found 
in current specifications. 

 A typical Web Services scenario can be seen as publish-find-bind triangle, in 
which a service provider publishes a service description, a consumer searches a serv-
ice registry for a service satisfying his criteria, analyzes the included information (or 
link to information) on the message structure to be exchanged and the address to 
exchange it, and interacts with the service to retrieve the resources needed. In this 
triangle, there are implicit, unspoken challenges for which a principled representation 
of uncertainty is needed. For example:    
• The publisher has to choose vocabulary with which to describe the service (or 

some other resource related to the service).  The vocabulary sets the properties 
for that class of item. Service ontology developers attempt to define the “right” 
set and structure of properties for the anticipated users. The consumer must know 
and understand the semantics of the chosen property vocabulary because these 
are the properties used to describe the class and its instances, and the consumer 
must understand and use the same vocabulary or there must be a known and ac-
cessible mapping between the properties used for description and those used as 
search categories. There are many opportunities for uncertainty about intended 
meanings. 

• The publisher uses the chosen property vocabulary as the basis to describe and 
register instances of that class. This means that the publisher associates values 
with the properties and registers the instance.  But what is the vocabulary for the 
values?  All parties may agree that something has the property color and on the 
meaning of that property, but if the publisher uses only primary colors and the 
subscriber’s search criterion asks for the color pink, the latter will never find a 
match for items the first had catalogued.  How does a client’s requested value re-
late to a provider’s published values?  Do they agree on the vocabulary? Do they 
agree on the mechanism to mediate vocabulary mismatches? 

• The publisher chooses a property vocabulary and creates instance descriptions by 
associating values.  One can infer what properties the publisher considers impor-
tant by which properties s/he chooses to populate, assuming values are not neces-
sarily assigned for all possible properties.  But what of the consumer’s priorities 
when assigning search criteria?  If the consumer assigns relative importance, how 
does the search engine trade off among different combinations of matches across 
the consumer’s search criteria, and how are missing attribute values handled?   

Beyond publish-find-bind for a single service, the vision is to provide services at 
the appropriate granularity, combining atomic services into more complex tasks.  For 
example, suppose a supplier needs to find the dimensions and weight limits for cargo 
containers for future shipments of items it produces.  In today’s integration paradigm, 



the supplier would need to query specific shipping agents directly, and might need to 
develop special-purpose software interfaces to support interactions with individual 
shipping agents.  In the envisioned architecture, the supplier would invoke a service 
that (i) searches a UDDI registry for shipping agents; (ii) queries each for its respec-
tive restrictions; (iii) compares with the supplier’s requirements; and (iv) selects a 
shipper that meets the requirements.  

This simple scenario does not include other actions that must be included in such a 
transaction.  For example, security will be needed to authenticate the supplier to the 
shipping agent and the shipping agent to the supplier. Other actions may be required 
to establish that each party is authorized to engage in business with the other.  The 
interaction itself may require a guaranteed level of service that would fall into the 
realm of reliable messaging to guarantee delivery.  Additionally, the response from 
the shipping agent could optionally include video showing details of container pack-
ing and handling, and these would not be appropriate to send if the supplier is using a 
low bandwidth communications link. 

Security, reliable messaging, and results dissemination are examples of general-
purpose services that could be combined with services for specific business functions, 
thus alleviating the business service from the need to create and maintain all support-
ing services.  All of these services will have associated service descriptions so that 
someone composing a robust service combination can identify the appropriate serv-
ices and the process by which these will work together to provide the higher-level 
functionality. That said, what are the uncertainties in identifying the correct services 
and combining these to form a consistent package?  Is uncertainty even a relevant 
concept, or is it a black-and-white issue of whether the pieces fit or not? When trying 
to decide among several services that appear to satisfy aspects of the same needed 
function, does the ability to reason under uncertainty come into play in identifying the 
component services to use and how to combine these? 

The above questions do not have simple, universally valid answers.  Nevertheless, 
we expect that there will be problems for which deterministic implementations of 
SOA elements will suffice to build viable solutions, but it is clear that there are issues 
that cannot be satisfactorily solved without a principled representation of uncertainty. 
Probabilistic ontology languages such as PR-OWL can fulfill this requirement. 

Providing a detailed account of how to use PO languages to build standards for 
SOA elements, or even examples of (say) service descriptions with probabilistic ele-
ments would require detailed explanation that goes beyond the limits of this paper. 
Thus, as a means to explore another possible use of POs in a SOA environment, we 
now present a possible framework using a federation of ontologies (common and 
probabilistic) for tackling the problem of semantic mapping among concepts used in 
Web Services (WS) descriptions within a WS repository.  

Figure 1 shows a simplified scheme for SOA using probabilistic semantic map-
ping. As a means to illustrate this scheme, we will devise fictitious examples involv-
ing Web Service providers within the geospatial reasoning domain. In this scheme, a 
service consumer or provider that conveys semantic information (ontology that it 
abides to, metadata about its requests, parameters, etc.) is called a SOA node Level 1, 
whereas a SOA node that has no semantic awareness is called a SOA node Level 0.  



 
Figure 1 – Probabilistic Semantic Mapping for Web Services 

In our first use case, S1 needs to generate a travel plan and requests a service for 
assessing the possibility of flooding in a given region due to recent heavy rains. Being 
a Level 1 client, S1 sends its request with embedded data about the ontology it 
references and other semantic information regarding its request (e.g. coordinate sys-
tem used, expected QoS, etc.). The WS repository, which itself uses an ontology, 
finds S4, another Level 1 client using the same ontology as S1. This ontology is the 
PR-OWL ontology “OntB”, which represents a probabilistic model of the geospatial 
domain and has the ability to perform a probabilistic assessment of the requested 
information. In this case, the request was probabilistic, but the uncertainty involved 
was related to the service itself (a probabilistic query on a uncertainty-laden domain), 
and not to the service exchanging process. In other words, the exchange was com-
pleted using the logical reasoner alone, since there was a perfect matching in terms of 
ontologies (both S1 and S4 abide to the same PR-OWL ontology) and the parameters 
of the requested service, and thus no probabilistic mapping was necessary. (yet, note 
that S1’s query made use of OntB’s ability to represent uncertainty about the geospa-
tial domain.)  

In a variation of the previous case, let’s suppose that no perfect match between the 
request and the available providers is found. In this case, the probabilistic reasoner 
accesses the WS repository to search for the most suitable service given the parame-
ters of S1’s request. During that process, it analyses the mapping ontologies related to 
“OntB” (the ontology referenced by S1) and the domain ontologies related to the 
services it deemed promising to fit S1’s request. In the end, an ordered list of possible 
providers is built, and the best possible answers will be returned to S1. This simple 
example shows that there might be many combinations of the use of logical and prob-
abilistic reasoners and ontologies to match the needs of a specific request.  

4   Conclusion 

Our main objective was to discuss the validity of probabilistic ontologies as a prin-
cipled representation of uncertainty in a given domain, and its uses in extending the 
reach of Service Oriented Architecture. Although the concept of a semantic-enabled 



SOA is in its infancy, we believe much can be achieved by employing both complete 
and incomplete knowledge to optimize the way resources are exchanged.  
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