A Crisp Representation for Fuzzy \mathcal{SHOIN} with Fuzzy Nominals and General Concept Inclusions

Fernando Bobillo Miguel Delgado Juan Gómez-Romero

Department of Computer Science and Artificial Intelligence
University of Granada, Spain

2th Workshop on Uncertainty Reasoning for the Semantic Web
Athens, GE, USA, November 2006
Agenda

1. Introduction

2. A Quick Survey on SHOIN

3. Fuzzy SHOIN

4. A Crisp Representation for Fuzzy SHOIN

5. Conclusions and Future Work
Preliminaries

- **Ontologies** are a core element in the layered architecture of the Semantic Web.
- **Description Logics** (DLs) are a family of logics for representing structured knowledge.
- DLs have been proved to be very useful as ontology languages.
- Standard for ontology representation: **OWL** Web Ontology Language:
 - OWL Lite
 - OWL DL, the most used, nearly equivalent to \(SHOIN(D) \) DL
 - OWL Full, undecidable
Motivation

- Classical ontologies/DLs are not appropriate for **uncertain or imprecise knowledge**

- Examples:
 - German is **generally** spoken in Germany, Austria and Switzerland
 - An inn is a **cheap** and **small** hotel

- Vagueness is inherent to a lot of real-world application domains
 - The Semantic Web will not be fully operative as long as it does not provide means to manage it

- One solution: **Fuzzy DLs** (DLs extended with fuzzy sets theory)
Motivation (2)

- OWL may be extended to a fuzzy DL-based language e.g. FuzzyOWL
 - The large number of resources available should be adapted
 - In particular, we need reasoners

- Reasoning within expressive DLs has a very high worst-case complexity
 - Significant gap between the design of a decision procedure and the achievement of a practical implementation
 - The experience with crisp DLs induces us to think that developing highly optimized implementations will be a hard task where ad-hoc mechanisms should be used for every particular fuzzy DL
 - In fact, there is no implemented reasoner for $fSHOIN$
 - Nothing is known about the efficiency of existing reasoners:
 - fuzzyDL ($f_{KD}^{1}SHIF(D), f_{L}SHIF(D)$)
 - Fire ($f_{KD}SHIN'$)

1 subscript stands for the implication used, which specifies the other operators.
Alternative way to obtain fuzzy ontologies facing these problems:

- To represent fuzzy DLs using crisp DLs
- To reduce reasoning within fuzzy DLs to reasoning within crisp DLs

This way it would be possible:

- To translate them automatically into a crisp ontology language
- To use currently available and highly optimized reasoners

Not a lot of work following this line

- U. Straccia showed a reasoning preserving procedure for \textit{fALCH}
On the other hand, current fuzzy DLs still present some limitations which we think that should be overcome:

- Some works on fuzzy DLs deal with nominals (named individuals)
 - They choose not to fuzzify the nominal construct arguing that a fuzzy singleton set does not represent any real concept world.
 - Hence, only crisp concepts can be defined extensively, as nominals either have to fully belong to them or not

- There have been proposed fuzzy general concept inclusions which allow to constrain the truth value of a general concept inclusion
 - Current reasoning algorithms do not allow them
Contributions

1. We propose a different definition of $f\text{SHOIN}$ including:
 - A fuzzy nominal construct
 - Reasoning with fuzzy GCIs

2. We reduce reasoning in $f_{KD}\text{SHOIN}$ to reasoning in SHOIN, extending the existing work on $f_{KD}\text{ALCH}$
Agenda

1. Introduction

2. A Quick Survey on \textit{SHOIN}

3. Fuzzy \textit{SHOIN}

4. A Crisp Representation for Fuzzy \textit{SHOIN}

5. Conclusions and Future Work
Syntax: Knowledge base

ABox: finite set of assertions about individuals:
- Concept assertions $a : C$ (a is an instance of C)
- Role assertions $(a, b) : R$ ((a, b) is an instance of R)
- Individual assertions:
 - $a \neq b$ (a and b are different individuals)
 - $a = b$ (a and b refer to the same individual)

TBox: a finite set of concept axioms:
- General concept inclusions (GCI) $C \sqsubseteq D$ (C is more specific than D)
- Concept definitions $C \equiv D$ ($C \sqsubseteq D$ and $D \sqsubseteq C$)

RBox: a finite set of role axioms:
- Role inclusions $R \sqsubseteq R'$ (R is more specific than R')
- Role definitions $R \equiv R'$ ($R \sqsubseteq R'$ and $R' \sqsubseteq R$)
- Transitive role axioms $\text{trans}(R)$ (R is transitive)
The concepts of the language can be built inductively:

- $C, D \rightarrow A$ (atomic concept)
- \top (top concept)
- \bot (bottom concept)
- $C \sqcap D$ (concept conjunction)
- $C \sqcup D$ (concept disjunction)
- $\neg C$ (concept negation)
- $\forall R.C$ (universal quantification)
- $\exists R.C$ (full existential quantification)
- $\{o_1, \ldots, o_m\}$ (nominals)
- $(\geq n S)$ (at-least unqualified number restriction)
- $(\leq n S)$ (at-most unqualified number restriction)

The roles of the language can be built using this syntax rule:

- $R \rightarrow R_A$ (atomic role)
- R^- (inverse role)
An interpretation \mathcal{I} is a pair $(\Delta^\mathcal{I}, \cdot^\mathcal{I})$ consisting of:

- A non empty set $\Delta^\mathcal{I}$ (the interpretation domain)
- An interpretation function $\cdot^\mathcal{I}$ mapping:
 - Every individual onto an element of $\Delta^\mathcal{I}$
 - Every atomic concept A onto a set $A^\mathcal{I} \subseteq \Delta^\mathcal{I}$
 - Every atomic role R onto a binary relation $R^\mathcal{I} \subseteq \Delta^\mathcal{I} \times \Delta^\mathcal{I}$.

We do not impose unique name assumption (UNA), i.e. two nominals might refer to the same individual.
The interpretation is extended to complex concepts and roles by the following inductive definitions:

\[\top^\mathcal{I} = \Delta^\mathcal{I} \]
\[\bot^\mathcal{I} = \emptyset \]
\[(C \cap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I} \]
\[(C \cup D)^\mathcal{I} = C^\mathcal{I} \cup D^\mathcal{I} \]
\[(\neg C)^\mathcal{I} = \Delta^\mathcal{I} \setminus C^\mathcal{I} \]
\[(\forall R.C)^\mathcal{I} = \{ a : \forall b, (a, b) \notin R^\mathcal{I} \text{ or } b \in C^\mathcal{I} \} \]
\[(\exists R.C)^\mathcal{I} = \{ a : \exists b, (a, b) \in R^\mathcal{I} \text{ and } b \in C^\mathcal{I} \} \]
\[\{ o_1, \ldots, o_m \}^\mathcal{I} = \{ o_1^\mathcal{I}, \ldots, o_m^\mathcal{I} \} \]
\[(\geq 0 \ S.C)^\mathcal{I} = \top^\mathcal{I} = \Delta^\mathcal{I} \]
\[(\geq m^2 \ S.C)^\mathcal{I} = \{ a : \{ b : (a, b) \in S^\mathcal{I} \text{ and } b \in C^\mathcal{I} \} \geq m \} \]
\[(\leq n \ S.C)^\mathcal{I} = \{ a : \{ b : (a, b) \in S^\mathcal{I} \text{ and } b \in C^\mathcal{I} \} \leq n \} \]
\[(R^-)^\mathcal{I} = \{(b, a) \in \Delta^\mathcal{I} \times \Delta^\mathcal{I} | (a, b) \in R^\mathcal{I} \} \]
An interpretation \(\mathcal{I} \) satisfies (is a model of):

- \(a : C \) iff \(a^\mathcal{I} \in C^\mathcal{I} \)
- \((a, b) : R \) iff \((a, b)^\mathcal{I} \in R^\mathcal{I} \)
- \(\langle a \neq b \rangle \) iff \(a^\mathcal{I} \neq b^\mathcal{I} \)
- \(\langle a = b \rangle \) iff \(a^\mathcal{I} = b^\mathcal{I} \)
- \(C \sqsubseteq D \) iff \(C^\mathcal{I} \subseteq D^\mathcal{I} \)
- \(C \equiv D \) iff \(C^\mathcal{I} = D^\mathcal{I} \)
- \(R \sqsubseteq R' \) iff \(R^\mathcal{I} \subseteq R'^\mathcal{I} \)
- \(R \equiv R' \) iff \(R^\mathcal{I} = R'^\mathcal{I} \)
- \(\text{trans}(R) \) iff \((R)^\mathcal{I} \) is transitive
- \(\text{ABox } K_A \) iff \(\mathcal{I} \) satisfies each element in \(K_A \)
- \(\text{TBox } K_T \) iff \(\mathcal{I} \) satisfies each element in \(K_T \)
- \(\text{RBox } K_R \) iff \(\mathcal{I} \) satisfies each element in \(K_R \)
- \(\text{KB } K = \langle K_A, K_T, K_R \rangle \) iff \(\mathcal{I} \) satisfies all \(K_A, K_T \) and \(K_R \)
A DL not only stores axioms and assertions, but also offers some reasoning services, such as:

- KB satisfiability
- Concept satisfiability
- Subsumption between concepts
- Instance checking

If a DL is closed under negation then all the basic reasoning services are reducible to KB satisfiability.
Agenda

1. Introduction

2. A Quick Survey on SHOIN

3. Fuzzy SHOIN

4. A Crisp Representation for Fuzzy SHOIN

5. Conclusions and Future Work
fSHOIN extends **SHOIN** to the fuzzy case by letting:
- Concepts denote fuzzy sets of individuals
- Roles denote fuzzy binary relations between individuals

Our logic is similar to other approaches adding:
- Fuzzy nominals
- Constraints on fuzzy GCIs

A fuzzy Knowledge Base (fKB) contains:
- A fuzzy ABox \(fK_A \)
- A fuzzy TBox \(fK_T \)
- A fuzzy RBox \(fK_R \)
Novelty: the truth value of constrained concept and role assertions

Concepts and role assertions:

- $\langle \psi \geq \alpha \rangle$
- $\langle \psi > \beta \rangle$
- $\langle \phi \leq \beta \rangle$
- $\langle \phi < \alpha \rangle$

where:

- ψ is an assertion of the form $a : C$ or $(a, b) : R$
- ϕ is an assertion of the form $a : C$
- $\alpha \in (0, 1]$ (excludes 0)
- $\beta \in [0, 1)$ (excludes 1)

Some assertions are not allowed:

- $\langle (a, b) : R \leq \beta \rangle$, $\langle (a, b) : R < \alpha \rangle$: relate to negated roles ($\not\in \text{SHOIN}$)
- $\langle a : C > 1 \rangle$, $\langle a : C < 0 \rangle$, $\langle (a, b) : R > 1 \rangle$: trivially unsatisfiable
- $\langle a : C \geq 0 \rangle$, $\langle a : C \leq 1 \rangle$, $\langle (a, b) : R \geq 0 \rangle$: trivially satisfiable

Individual assertions:

- $\langle a \neq b \rangle$
- $\langle a = b \rangle$
Novelty: the truth value of GCIs may be constrained

Fuzzy GCIs:
- $\langle C \sqsubseteq D \geq \alpha \rangle$
- $\langle C \sqsubseteq D > \beta \rangle$
- $\langle C \sqsubseteq D \leq \beta \rangle$
- $\langle C \sqsubseteq D < \alpha \rangle$

$C \equiv D$ is an abbreviation of $\langle C \sqsubseteq D \geq 1 \rangle$ and $\langle D \sqsubseteq C \geq 1 \rangle$

Fuzzy role inclusions $R \sqsubseteq R'$

Fuzzy role definitions $R \equiv R'$ ($R \sqsubseteq R'$ and $R' \sqsubseteq R$)

Transitive role axiom $\text{trans}(R)$
Syntax: complex concepts and roles

- Concepts can be built inductively:

\[C, D \rightarrow \]

\[A \quad | \quad \text{atomic concept} \]
\[\top \quad | \quad \text{top concept} \]
\[\bot \quad | \quad \text{bottom concept} \]
\[C \sqcap D \quad | \quad \text{concept conjunction} \]
\[C \sqcup D \quad | \quad \text{concept disjunction} \]
\[\neg C \quad | \quad \text{concept negation} \]
\[\forall R. C \quad | \quad \text{universal quantification} \]
\[\exists R. C \quad | \quad \text{full existential quantification} \]
\[\{(o_1, \alpha_1), \ldots, (o_m, \alpha_m)\} \quad | \quad \text{nominals} \]
\[(\geq n S) \quad | \quad \text{at-least number restriction} \]
\[(\leq n S) \quad | \quad \text{at-most number restriction} \]

- Complex roles can be built using this syntax rule: \(R \rightarrow R_A \mid R^- \)
Semantics (1)

- A fuzzy interpretation \mathcal{I} is a pair $(\Delta^\mathcal{I}, \cdot^\mathcal{I})$ consisting of:
 - A non empty set $\Delta^\mathcal{I}$ (the interpretation domain)
 - A fuzzy interpretation function $\cdot^\mathcal{I}$ mapping:
 - Every individual onto an element of $\Delta^\mathcal{I}$
 - Every concept C onto a function $C^\mathcal{I} : \Delta^\mathcal{I} \rightarrow [0, 1]$
 - Every role R onto a function $R^\mathcal{I} : \Delta^\mathcal{I} \times \Delta^\mathcal{I} \rightarrow [0, 1]$
 - $C^\mathcal{I}$: membership degree function of the fuzzy concept C w.r.t. \mathcal{I}
 - $R^\mathcal{I}$: membership degree function of the fuzzy role R w.r.t. \mathcal{I}

- In fuzzy DLs most reasoning services are reducible to fKB satisfiability, so here in after we will only consider this task

- We do not impose unique name assumption (UNA)
The fuzzy interpretation function is extended:

\[
\begin{align*}
\top^\mathcal{I}(a) &= 1 \\
\bot^\mathcal{I}(a) &= 0 \\
(C \sqcap D)^\mathcal{I}(a) &= C^\mathcal{I}(a) \land D^\mathcal{I}(a) \\
(C \sqcup D)^\mathcal{I}(a) &= C^\mathcal{I}(a) \lor D^\mathcal{I}(a) \\
(\neg C)^\mathcal{I}(a) &= \neg C^\mathcal{I}(a) \\
(\forall R. C)^\mathcal{I}(a) &= \inf_{b \in \Delta^\mathcal{I}} \{R^\mathcal{I}(a, b) \rightarrow C^\mathcal{I}(b)\} \\
(\exists R. C)^\mathcal{I}(a) &= \sup_{b \in \Delta^\mathcal{I}} \{R^\mathcal{I}(a, b) \land C^\mathcal{I}(b)\} \\
\{(o_i, \alpha_i)\}^\mathcal{I}(a) &= \sup_{i \mid a \in \{o_i^\mathcal{I}\}} \alpha_i \\
(\geq 0)^\mathcal{I}(a) &= \top^\mathcal{I}(a) = 1 \\
(\geq m)^\mathcal{I}(a) &= \sup_{b_1, \ldots, b_m \in \Delta^\mathcal{I}} [\land_{i=1}^m S^\mathcal{I}(a, b_i) \land \land_{i<j} \{b_i \neq b_j\}] \\
(\leq n \, S)^\mathcal{I}(a) &= \neg(\geq n+1 \, S)^\mathcal{I}(a) \\
(R^-)^\mathcal{I}(a, b) &= R^\mathcal{I}(b, a)
\end{align*}
\]
Fuzzy nominals

- Example: Country where German is a widely spoken language: \(C \equiv \{ \text{germany, austria, switzerland} \} \)

- The classical semantics forces switzerland to fully belong to the concept or not: \(\{ o_i \}^T(a) = 1 \) if \(a \in \{ o_i^T \} \) or 0 otherwise

- With fuzzy nominals: \(\{(\text{germany}, 1), (\text{austria}, 1), (\text{switzerland}, 0.67)\} \)
 - It does represent a real-life concept: a fuzzy set defined extensively

- Recall that the semantics is \(\sup_i | a \in \{ o_i^T \} \alpha_i \)
 - \(a : C \leq 0.8 \) prevents \(a \) of being \(\text{germany} \) or \(\text{austria} \)
 - Different from a fuzzy disjunction of nominals.
 - We consider equality between individuals \((a = o_i) \) to be crisp
 - The definition generalizes the previous definition for nominals
A fuzzy interpretation \mathcal{I} satisfies (is a model of):

$$\langle a : C \geq \alpha \rangle^3 \text{ iff } C^\mathcal{I}(a^\mathcal{I}) \geq \alpha$$
$$\langle (a, b) : R \geq \alpha \rangle^3 \text{ iff } R^\mathcal{I}(a^\mathcal{I}, b^\mathcal{I}) \geq \alpha$$
$$\langle a \neq b \rangle \text{ iff } a^\mathcal{I} \neq b^\mathcal{I}$$
$$\langle a = b \rangle \text{ iff } a^\mathcal{I} = b^\mathcal{I}$$

$$\langle C \sqsubseteq D \geq \alpha \rangle^3 \text{ iff } \inf_{a \in \Delta^\mathcal{I}} \{C^\mathcal{I}(a) \rightarrow D^\mathcal{I}(a)\} \geq \alpha$$
$$C \equiv D \text{ iff } C^\mathcal{I} = D^\mathcal{I}$$
$$R \sqsubseteq R' \text{ iff } R^\mathcal{I} \subseteq R'^\mathcal{I}$$
$$R \equiv R' \text{ iff } R^\mathcal{I} = R'^\mathcal{I}$$

trans(R) iff $\forall a, b \in \Delta^\mathcal{I}, R^\mathcal{I}(a, b) \geq \sup_{c \in \Delta^\mathcal{I}} R^\mathcal{I}(a, c) \land R^\mathcal{I}(c, b)$

ABox K_A iff \mathcal{I} satisfies each element in K_A

TBox K_T iff \mathcal{I} satisfies each element in K_T

RBox K_R iff \mathcal{I} satisfies each element in K_R

fKB $\langle K_A, K_T, K_R \rangle$ iff \mathcal{I} satisfies all K_A, K_T and K_R

Definitions are similar for $> \beta$, $\leq \beta$ and $< \alpha$
The definition of fuzzy GCIs allows concept subsumption to hold to a certain degree in $[0, 1]$

- Example: $\langle Inn \sqsubseteq Hotel \geq 0.5 \rangle$
- Translating universal quantification and GCIs to First Order Logic leads to implication functions
- It seems natural to let both (or neither) of them be fuzzy

This does not hold for role inclusion axioms

- Asymmetry in the expressivity
- The implication function would require the subjacent DL to have negated roles and role disjunction
- We have preferred to consider $SHOIN^\bot$, underlying OWL DL
Some properties (1)

Lemma

Fuzzy interpretations coincide with crisp interpretations if we restrict to the membership degrees of 0 and 1

Here in after we concentrate on $f_{KD\text{SHOIN}}$:

- Gödel t-norm (minimum): $\alpha \land \beta = \min\{\alpha, \beta\}$
- Gödel t-conorm (maximum): $\alpha \lor \beta = \max\{\alpha, \beta\}$
- Łukasiewicz negation: $\neg \alpha = 1 - \alpha$
- Kleene-Dienes implication: $\alpha \rightarrow \beta = \max\{1 - \alpha, \beta\}$

This choice of the t-norm and the t-conorm eases the translation.
Some properties (2)

- $f_{KD}SHOIN$ allows some sort of modus ponens over concepts and roles, even with the new semantics of fuzzy GCIs:

Lemma

For $\alpha, \beta, \gamma \in [0, 1]$, $\succsim = \{\geq, >\}$ and $\alpha \not\succsim 1 - \beta$ ($\neg \geq = <, \neg > = \leq$), the following properties are verified:

1. $\langle a : C \succsim \alpha \rangle$ and $\langle C \sqsubseteq D \succsim \beta \rangle$ imply $\langle a : D \succsim \beta \rangle$
2. $\langle (a, b) : R \succsim \gamma \rangle$ and $\langle R \sqsubseteq R' \rangle$ imply $\langle (a, b) : R' \succsim \gamma \rangle$
3. $\langle (a, b) : R \succsim \alpha \rangle$ and $\langle a : \forall R.C \succsim \beta \rangle$ imply $\langle b : C \succsim \beta \rangle$
The use of Kleene-Dienes implication in the semantics of fuzzy GCIs brings about two counter-intuitive effects:

1. A concept does not fully subsume itself:
 \[C \sqsubseteq C \Rightarrow \inf_{a \in \Delta_I} \max\{1 - C^I(a), C^I(a)\} = 0.5 \]

2. Crisp concept subsumption forces fuzzy concepts to be crisp:
 \[\langle C \sqsubseteq D \geq 1 \rangle \Rightarrow \inf_{a \in \Delta_I} \max\{1 - C^I(a), D^I(a)\} \geq 1 \text{ which is true iff for each element of the domain } D^I(a) = 1 \text{ or } C^I(a) = 0 \]

Need of further investigation involving alternative fuzzy operators!

- A residuum based implication would fix 1: \[a \rightarrow b = 1 \text{ if } a \leq b \]
- Łukasiewicz implication would fix 2: \[a \rightarrow b = \min\{1, 1 - a + b\} \]
Agenda

1. Introduction

2. A Quick Survey on SHOIN

3. Fuzzy SHOIN

4. A Crisp Representation for Fuzzy SHOIN

5. Conclusions and Future Work
U. Straccia presents a reasoning preserving transformation for $f_{KD}ALCH$ into crisp $ALCH$

We extend this work to $f_{KD}SHOIN$

Example: transform $\langle a : A \geq 0.8 \rangle$ into $a : A_{\geq 0.8}$ (0.8-cut of A)

Procedure:

1. Define some new atomic concepts and roles
2. Add some new axioms to preserve the semantics of the fKB
3. Map separately ABox, TBox and RBox
New elements (1)

- It has been shown that in $f_{KD\text{ALC}}$, the set of the degrees which must be considered for any reasoning task can be computed as:

$$N^{fK} = X^{fK} \cup \{1 - \alpha \mid \alpha \in X^{fK}\}$$

- where X^{fK} is the set of degrees appearing in the fKB:

$$X^{fK} = \{0, 0.5, 1\} \cup \{\alpha \mid \langle \Psi \geq \alpha \rangle \in fK_A\} \cup \{\beta \mid \langle \Psi > \beta \rangle \in fK_A\} \cup \{1 - \beta \mid \langle \Phi \leq \beta \rangle \in fK_A\} \cup \{1 - \alpha \mid \langle \Phi < \alpha \rangle \in fK_A\} \cup \{\alpha \mid \langle \Omega \geq \alpha \rangle \in fK_T\} \cup \{\beta \mid \langle \Omega > \beta \rangle \in fK_T\} \cup \{1 - \beta \mid \langle \Omega \leq \beta \rangle \in fK_T\} \cup \{1 - \alpha \mid \langle \Omega < \alpha \rangle \in fK_T\}$$

- This also holds in $f_{KD\text{SHOIN}}$

- When other fuzzy operators are considered this is no longer true
 - We may calculate all possible degrees in $[0, 1]$ with a given precision, but further investigation is required
For every atomic concept and role in the fKB and for each degree \(\alpha \in N^{fK} \) we create:

- Four new atomic concepts \(A_{\geq \alpha}, A_{> \beta}, A_{\leq \beta}, A_{< \alpha} \)
- Two new atomic roles \(R_{\geq \alpha}, R_{> \beta} \)

Informally, \(A_{\geq \alpha} \) represents the crisp set of individuals which are instance of \(A \) with degree higher or equal than \(\alpha \) (\(\alpha \)-cut of \(A \))

- \(A_{< 0}, A_{> 1}, R_{> 1} \) are not considered (they are always empty sets)
- \(A_{\leq 1}, A_{\geq 0}, R_{\geq 0} \) are not considered (they are equivalent to \(\top \))
The semantics of these newly introduced atomic concepts and roles is preserved by some terminological and role axioms

New concept axioms:

\[
\begin{align*}
A_{\geq \gamma_{i+1}} & \sqsubseteq A_{\geq \gamma_i} & A_{\geq \gamma_i} & \sqsubseteq A_{\geq \gamma_i} \\
A_{\leq \gamma_j} & \sqsubseteq A_{\leq \gamma_j} & A_{\leq \gamma_i} & \sqsubseteq A_{\leq \gamma_i} \\
A_{\geq \gamma_j} \sqcap A_{\leq \gamma_j} & \sqsubseteq \bot & A_{\geq \gamma_j} \sqcap A_{\leq \gamma_i} & \sqsubseteq \bot \\
\top & \sqsubseteq A_{\geq \gamma_j} \sqcup A_{\leq \gamma_j} & \top & \sqsubseteq A_{\geq \gamma_i} \sqcup A_{\leq \gamma_i}
\end{align*}
\]

New role axioms:

\[
\begin{align*}
R_{\geq \gamma_{i+1}} & \sqsubseteq R_{\geq \gamma_i} & R_{\geq \gamma_i} & \sqsubseteq R_{\geq \gamma_i} \\
R_{\leq \gamma_i} & \sqsubseteq R_{\leq \gamma_i} & R_{\leq \gamma_i} & \sqsubseteq R_{\leq \gamma_i}
\end{align*}
\]

\[\langle (a, b) : R \leq \beta \rangle, \langle (a, b) : R < \alpha \rangle\] would need additional role constructs: \(\sqcap_R, \sqcup_R, \top_R, \bot_R\)
A fuzzy ABox is mapped into using a mapping σ:

$$
\begin{align*}
\sigma(\langle a : C \Join \gamma \rangle) &= a : \rho(C, \Join \gamma) \\
\sigma(\langle (a, b) : R \Join \gamma \rangle) &= (a, b) : \rho(R, \Join \gamma) \\
\sigma(\langle a \not\equiv b \rangle) &= a \not\equiv b \\
\sigma(\langle a = b \rangle) &= a = b
\end{align*}
$$

- Fuzzy assertions are mapped into **crisp assertions**
 - ρ is inductively defined on the structure of concepts and roles
Mapping concepts and roles (1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$\rho(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$\geq \gamma$</td>
<td>$A_{\geq \gamma}$ if $\gamma \neq 0$, \top otherwise</td>
</tr>
<tr>
<td>A</td>
<td>$> \gamma$</td>
<td>$A_{> \gamma}$, if $\gamma \neq 1$, \bot otherwise</td>
</tr>
<tr>
<td>A</td>
<td>$\leq \gamma$</td>
<td>$A_{\leq \gamma}$ if $\gamma \neq 0$, \top otherwise</td>
</tr>
<tr>
<td>A</td>
<td>$< \gamma$</td>
<td>$A_{< \gamma}$, if $\gamma \neq 1$, \bot otherwise</td>
</tr>
<tr>
<td>R</td>
<td>$\geq \gamma$</td>
<td>$R_{\geq \gamma}$ if $\gamma \neq 0$, \top otherwise</td>
</tr>
<tr>
<td>R</td>
<td>$> \gamma$</td>
<td>$R_{> \gamma}$, if $\gamma \neq 1$, \bot otherwise</td>
</tr>
<tr>
<td>\top</td>
<td>$\geq \gamma$</td>
<td>\top</td>
</tr>
<tr>
<td>\top</td>
<td>$> \gamma$</td>
<td>\top if $\gamma \neq 1$, \bot otherwise</td>
</tr>
<tr>
<td>\top</td>
<td>$\leq \gamma$</td>
<td>\top if $\gamma = 1$, \bot otherwise</td>
</tr>
<tr>
<td>\top</td>
<td>$< \gamma$</td>
<td>\bot</td>
</tr>
<tr>
<td>\bot</td>
<td>$\geq \gamma$</td>
<td>\top if $\gamma = 0$, \bot otherwise</td>
</tr>
<tr>
<td>\bot</td>
<td>$> \gamma$</td>
<td>\bot</td>
</tr>
<tr>
<td>\bot</td>
<td>$\leq \gamma$</td>
<td>\top</td>
</tr>
<tr>
<td>\bot</td>
<td>$< \gamma$</td>
<td>\top if $\gamma \neq 0$, \bot otherwise</td>
</tr>
</tbody>
</table>
Mapping concepts and roles (2)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$\rho(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C \sqcap D$</td>
<td>${\geq, >} \gamma$</td>
<td>$\rho(C, {\geq, >} \gamma) \sqcap \rho(D, {\geq, >} \gamma)$</td>
</tr>
<tr>
<td>$C \sqcap D$</td>
<td>${\leq, <} \gamma$</td>
<td>$\rho(C, {\leq, <} \gamma) \sqcup \rho(D, {\leq, <} \gamma)$</td>
</tr>
<tr>
<td>$C \sqcup D$</td>
<td>${\geq, >} \gamma$</td>
<td>$\rho(C, {\geq, >} \gamma) \sqcup \rho(D, {\geq, >} \gamma)$</td>
</tr>
<tr>
<td>$C \sqcup D$</td>
<td>${\leq, <} \gamma$</td>
<td>$\rho(C, {\leq, <} \gamma) \sqcap \rho(D, {\leq, <} \gamma)$</td>
</tr>
<tr>
<td>$\neg C$</td>
<td>${\geq, >} \gamma$</td>
<td>$\rho(C, {\leq, <} 1 - \gamma)$</td>
</tr>
<tr>
<td>$\neg C$</td>
<td>${\leq, <} \gamma$</td>
<td>$\rho(C, {\geq, >} 1 - \gamma)$</td>
</tr>
<tr>
<td>$\exists R.C$</td>
<td>${\geq, >} \gamma$</td>
<td>$\exists \rho(R, {\geq, >} \gamma).\rho(C, {\geq, >} \gamma)$</td>
</tr>
<tr>
<td>$\exists R.C$</td>
<td>${\leq, <} \gamma$</td>
<td>$\forall \rho(R, {>, \geq} \gamma).\rho(C, {\leq, <} \gamma)$</td>
</tr>
<tr>
<td>$\forall R.C$</td>
<td>${\geq, >} \gamma$</td>
<td>$\forall \rho(R, {>, \geq} 1 - \gamma).\rho(C, {\geq, >} \gamma)$</td>
</tr>
<tr>
<td>$\forall R.C$</td>
<td>${\leq, <} \gamma$</td>
<td>$\exists \rho(R, {\geq, >} 1 - \gamma).\rho(C, {\leq, <} \gamma)$</td>
</tr>
</tbody>
</table>
Mapping concepts and roles (3)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$\rho(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${(o_1, \alpha_1), \ldots, (o_m, \alpha_m)}$</td>
<td>$\otimes \gamma$</td>
<td>${o_i \mid \alpha_i \otimes \gamma, 1 \leq i \leq n}_{\otimes \gamma}$</td>
</tr>
<tr>
<td>≥ 0 S</td>
<td>$\otimes \gamma$</td>
<td>$\rho(T, \otimes \gamma)$</td>
</tr>
<tr>
<td>$\geq m$ S</td>
<td>${\geq, >} \gamma$</td>
<td>$\geq m \rho(S, {\geq, >} \gamma)$</td>
</tr>
<tr>
<td>$\geq m$ S</td>
<td>${\leq, <} \gamma$</td>
<td>$\leq m-1 \rho(S, {>, \geq} \gamma)$</td>
</tr>
<tr>
<td>$\leq n$ S</td>
<td>${\geq, >} \gamma$</td>
<td>$\leq n \rho(S, {>, \geq} 1 - \gamma)$</td>
</tr>
<tr>
<td>$\leq n$ S</td>
<td>${\leq, <} \gamma$</td>
<td>$\geq n+1 \rho(S, {\geq, >} 1 - \gamma)$</td>
</tr>
<tr>
<td>R^-</td>
<td>$\otimes \gamma$</td>
<td>$\rho(R, \otimes \gamma)^-$</td>
</tr>
</tbody>
</table>
Mapping the TBox

- A positive GCI ($\geq, >$) is reduced into a GCI:

\[
k(\langle C \sqsubseteq D \geq \gamma \rangle) = \rho(C, > 1 - \gamma) \sqsubseteq \rho(D, \geq \gamma)
\]
\[
k(\langle C \sqsubseteq D > \gamma \rangle) = \rho(C, \geq 1 - \gamma) \sqsubseteq \rho(D, > \gamma)
\]

- A negative GCI ($\leq, <$) is reduced into an assertion about a new individual x:

\[
A(\langle C \sqsubseteq D \leq \gamma \rangle) = x : \rho(C, \geq 1 - \gamma) \sqcap \rho(D, \leq \gamma)
\]
\[
A(\langle C \sqsubseteq D < \gamma \rangle) = x : \rho(C, > 1 - \gamma) \sqcap \rho(D, < \gamma)
\]

- The natural reduction would be to a negated GCI, but it is not part of crisp $SHOIN$.

- How to deal with alternative implication functions?
Mapping the RBox

- A fuzzy RBox is reduced using a function $k(fK, fK_R) = \bigcup_{\Omega \in fK_R} k(\Omega)$
- Role axioms are reduced using a function $k(\Omega)$:

 \[
 k(R \sqsubseteq R') = \bigcup_{\gamma \in N^{fK}, \in\{\geq,>\}} \rho(R, \otimes \gamma) \sqsubseteq \rho(R', \otimes \gamma)
 \]

 \[
 k(\text{trans}(R)) = \bigcup_{\gamma \in N^{fK}, \in\{\geq,>\}} \text{trans}(\rho(R, \otimes \gamma))
 \]
Complexity

- A fKB fK is reduced into a KB $K(fK)$:

<table>
<thead>
<tr>
<th>fKB</th>
<th>$K(fK)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>fK_A</td>
<td>$\sigma(fK_A) \cup A(fK_T)$</td>
</tr>
<tr>
<td>fK_T</td>
<td>$T(N^{fK}) \cup k(fK, fK_T)$</td>
</tr>
<tr>
<td>fK_R</td>
<td>$R(N^{fK}) \cup k(fK, fK_R)$</td>
</tr>
</tbody>
</table>

- The complexity is quadratic:
 - ABox is linear
 - TBox and RBox are quadratic

- In the previous work, a fuzzy GCI is reduced into a set of crisp GCIs
 - Our semantics for fuzzy GCIs allows to reduce each axiom into either an axiom or an assertion
 - This reduction in the size of the TBox is very interesting since reasoning with GCIs is a source of computational complexity
Reasoning

Theorem

A $f_{KD}SHOIN$ fKB fK is satisfiable iff $K(fK)$ is satisfiable

- Firstly, it has to be proved that the translation preserves the satisfiability of every single statement of the fKB
 - If there exists a fuzzy interpretation satisfying a fuzzy statement, then a crisp interpretation satisfying the result of its translation can be built

- Secondly, it has to be proved that the translation preserves the satisfiability of the whole fKB
 - Clashes produced by pairs of conjugated axioms are preserved by the new concept axioms: $A_{\geq \gamma_j} \sqcap A_{< \gamma_j} \sqsubseteq \bot$, $A_{> \gamma_i} \sqcap A_{\leq \gamma_i} \sqsubseteq \bot$
Agenda

1. Introduction
2. A Quick Survey on \textit{SHOIN}
3. Fuzzy \textit{SHOIN}
4. A Crisp Representation for Fuzzy \textit{SHOIN}
5. Conclusions and Future Work
Conclusions

- A sound **fuzzy extension of SHOIN** including:
 - Fuzzy nominals, enabling to define fuzzy sets extensively
 - Reasoning with fuzzy GCIs, allowing to constrain the truth value of a GCI

- **Reasoning preserving** procedure into a crisp KB.

- Alternative approach to achieve fuzzy ontologies, **reusing** currently existing crisp ontology languages and reasoners

- The semantics of fuzzy GCIs:
 - Allows fuzzy GCIs holding to some degree
 - Reduces the size of the resulting TBox w.r.t. Zadeh implication
 - However, it imposes some counter-intuitive effects
Future work

- **Empirical evaluation** to test the translation
- Consider different **fuzzy operators**
 - In particular, avoid the counter-intuitive effects of the Kleene-Dienes implication
- Include a crisp representation for **fuzzy datatypes**
 - Since OWL does not currently allow to define customised datatypes, consider OWL Eu
- Consider **more expressive DLs** and, in particular, **SROIQ**:
 - Subjacent DL of OWL 1.1
 - The additional expressivity in roles may help to overcome the asymmetry in fuzzy concept and role inclusion axioms
Questions?

Thank you very much for your attention