Deciding Fuzzy Description Logics by Type Elimination

Uwe Keller, University of Innsbruck, Austria
Stijn Heymans, Vienna University of Technology, Austria

Semantic Technology Institute (STI)
University of Innsbruck, Austria

October 21, 2008
What is it all about?

A modern approach to find out what is in our paper¹:

⇒ Well, this all seems rather FUZZY!
Motivation

Fuzzy Description Logics (FDLs): extend crisp DLs semantically and syntactically to integrate **vagueness**

- A lot of concepts and relations in domain models are **not clearly defined** (e.g. `tall(·)`, `likes(·, ·)`)
- Useful: Observations about objects can be “contradicting” to some extent, e.g. something being hot and cold at the same time.

Complexity of Reasoning in FDLs?

- We could not find too many results, expect e.g. [Str01]
- **Intuitively:** extension of classical DLs implies “at least as hard as DLs”
- It is good to have a **variety of different tools** to tackle the problem!

Reasoning in FDLs

- Directly in the FDL world: mainly tableau-based methods, e.g. [Str01, SSSP06, SSP⁺07, SB07, LXLK06, HPS08]
- By translation to classical DLs, e.g. [Str04] (should always lead to a suboptimal solution!)
Research Question

Can we come up with a way to perform reasoning in FDLs that

- Solves a fundamental and useful reasoning problem
- Works directly in the level of FDLs (no translation to DLs)
- Works differently from tableau-based methods
- Can deal with GCIs?
What did we achieve?

- Designed a novel procedure \textbf{FixIt\textsubscript{ALC}} for deciding knowledge base (KB) satisfiability in the FDL \textsubscript{ALC}

- Formally proved soundness, completeness and termination of the algorithm and can show that the runtime behavior is worst-case optimal

- It is the first fixpoint-based decision procedure that has been proposed for FDL introducing a new class of inference procedures into FDL reasoning

- Our approach can deal with general terminologies (GCIs)
 - Together with [SSSP06, LXLK06, SB07, HPS08], one of the few possible approaches.
 - First non-tableau-based decision procedure to integrate GCIs
 - General terminologies are handled differently than in standard tableau-based method such as [SSSP06, LXLK06]
How did we achieve that?

- **FixIt**(\textit{ALC}) generalizes a type-elimination-based decision procedure [Pra80] for the (classical) modal logic \textit{K}, i.e. \textit{KBDD} [PSV06], to the FDL \textit{ALC}.

- Principle underlying \textit{KBDD} carries over to \textit{ALC}, but only in a different form than in [PSV06].

- Additionally we integrate (fuzzy) ABoxes and general TBoxes which are not dealt with in \textit{KBDD}.
Syntax and Semantics of Concept Expressions

<table>
<thead>
<tr>
<th>Constructor</th>
<th>Syntax E</th>
<th>Semantics $E^I(o)$ (wrt. interp. I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept names</td>
<td>A</td>
<td>$A^I : \Delta^I \rightarrow [0, 1]$</td>
</tr>
<tr>
<td>role names</td>
<td>R</td>
<td>$R^I : \Delta^I \times \Delta^I \rightarrow [0, 1]$</td>
</tr>
<tr>
<td>universal truth / possibility</td>
<td>\top</td>
<td>1</td>
</tr>
<tr>
<td>concept conjunction</td>
<td>$C \sqcap D$</td>
<td>$\min(C^I(o), D^I(o))$</td>
</tr>
<tr>
<td>concept disjunction</td>
<td>$C \sqcup D$</td>
<td>$\max(C^I(o), D^I(o))$</td>
</tr>
<tr>
<td>concept negation</td>
<td>$\neg C$</td>
<td>$1 - C^I(o)$</td>
</tr>
<tr>
<td>univ. value restriction</td>
<td>$\forall R.C$</td>
<td>$\inf_{o' \in \Delta^I} {\max(1 - R^I(o, o'), C^I(o'))}$</td>
</tr>
<tr>
<td>ex. value restriction</td>
<td>$\exists R.C$</td>
<td>$\sup_{o' \in \Delta^I} {\min(R^I(o, o'), C^I(o'))}$</td>
</tr>
<tr>
<td>universal falsehood</td>
<td>\bot</td>
<td>0</td>
</tr>
</tbody>
</table>
A (Minimalist) Fuzzy Description Logic: \mathbf{ALC} [Str01]

Syntax and Semantics of Fuzzy Axioms

<table>
<thead>
<tr>
<th>Type</th>
<th>Axiom α</th>
<th>Satisfaction of α by \mathcal{I}: $\mathcal{I} \models \alpha$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{T}: General Concept Inclusion (GCI)</td>
<td>$C \sqsubseteq D$</td>
<td>$C^\mathcal{I}(o) \leq D^\mathcal{I}(o)$ for all $o \in \Delta^\mathcal{I}$</td>
</tr>
<tr>
<td>\mathcal{A}: Fuzzy concept membership</td>
<td>$\langle i : C \bowtie d \rangle$</td>
<td>$C^\mathcal{I}(i^\mathcal{I}) \bowtie d$ for $\bowtie \in {\geq, \leq, =}$</td>
</tr>
<tr>
<td>\mathcal{A}: Fuzzy relation assertion</td>
<td>$\langle R(i, i') \geq d \rangle$</td>
<td>$R^\mathcal{I}(i^\mathcal{I}, i'^\mathcal{I}) \geq d$</td>
</tr>
</tbody>
</table>

Syntax and Semantics of a fuzzy KB

A **TBox** \mathcal{T} is a finite set of GCIs. An **ABox** \mathcal{A} is a finite set of fuzzy assertions. A **fuzzy knowledge base** \mathcal{K} is a pair $\mathcal{K} = (\mathcal{T}, \mathcal{A})$

$\mathcal{I} \models \mathcal{T}$ iff. $\mathcal{I} \models \alpha$ for all $\alpha \in \mathcal{T}$

$\mathcal{I} \models \mathcal{A}$ iff. $\mathcal{I} \models \alpha$ for all $\alpha \in \mathcal{A}$

$\mathcal{I} \models \mathcal{K}$ iff. $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$
Reasoning in ALC

Given a fuzzy KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, fuzzy ABox axioms or GCIs α, we can analyze particular semantic characteristics and interdependencies:

- \mathcal{K} is **satisfiable** (or consistent) iff there is a model \mathcal{I} for \mathcal{K}, i.e. an interpretation \mathcal{I} such that

 $$\mathcal{I} \models \mathcal{T} \quad \text{and} \quad \mathcal{I} \models \mathcal{A}$$

- \mathcal{K} **entails** α (denoted as $\mathcal{K} \models \alpha$) iff all models \mathcal{I} of \mathcal{K} satisfy α

Specific entailment problems: concept equivalence, subsumption, disjointness, concept membership at least / most to a given degree, individual interrelation at least to a given degree, ...

Complexity of checking KB satisfiability in ALC:
ExpTime-complete [KH09, KH08]
Type Elimination: Overview

- Can be seen as a **model building procedure**

- Does not rely on systematic search in the first place, but instead constructs a canonical interpretation by means of a **fixpoint construction**

- The computed interpretation is in general **not tree-shaped** (as in tableau-based methods)
Preprocessing

Transform input KB \mathcal{K} into a syntactically restricted normal form:

- **Normalize Fuzzy Axioms to the form $\langle \alpha \geq d \rangle$:**

 $\langle i : C \leq d \rangle \leadsto \langle i : \neg C \geq 1 - d \rangle$

 $\langle i : C = d \rangle \leadsto \langle i : C \geq d \rangle, \langle i : \neg C \geq 1 - d \rangle$

- **Expand all syntactic abbreviations:**

 $\exists R.D \leadsto \neg \forall R.\neg D$

 $\bot \leadsto \neg \top$

- **Convert all axioms into Box Normal Form (BNF):** Negation occurs only in front of concept names, \top or expressions of the form $\exists R.D$:

 $\neg (C \sqcap D) \leadsto \neg C \sqcup \neg D$

 $\neg (C \sqcup D) \leadsto \neg C \sqcap \neg D$

 $\neg \neg C \leadsto C$
The closure of a normalized knowledge base $\text{cl}(\mathcal{K})$ is defined as the smallest set of concept expressions such that for all $C \in \text{sub}(\mathcal{K})$, if C is not of the form $\neg D$, then $\{C, \neg C\} \subseteq \text{cl}(\mathcal{K})$

In other words: the closure of a KB contains for any concept expression occurring in KB the positive and negative form.

How we use that: The closure of a KB gives us the basic vocabulary to describe all relevant properties of individuals in interpretations.
Further, let $\text{PossDeg}(\mathcal{K})$ denote the set of all relevant possibility degrees that can be derived from \mathcal{K} defined by

$$\text{PossDeg}(\mathcal{K}) = \{0, 0.5, 1\} \cup \{d|\langle \alpha \geq d \rangle \in \mathcal{A}\} \cup \{1 - d|\langle \alpha \geq d \rangle \in \mathcal{A}\}$$

[Str01, Str04] showed that if \mathcal{K} is satisfiable, then there is as well a model of \mathcal{K} which assigns possibility degrees in $\text{PossDeg}(\mathcal{K})$ only.

Hence, for our purposes we do not need to consider arbitrary possibility degrees $d \in [0, 1]$, but only the finite set $\text{PossDeg}(\mathcal{K})$ that can be derived from \mathcal{K}.
We are living in a fuzzy world: Properties always hold to a certain degree

Definition (Fuzzy \mathcal{K}-Type)

A fuzzy \mathcal{K}-type τ is a maximal subset of $\text{cl}(\mathcal{K}) \times \text{PossDeg}(\mathcal{K})$ such that the following conditions are satisfied:

1. if $\langle C, d \rangle \in \tau$ and $\langle C, d' \rangle \in \tau$ then $d = d'$
2. if $C = \neg C'$ then $\langle C, d \rangle \in \tau$ iff $\langle C', 1 - d \rangle \in \tau$
3. if $C = C' \land C''$ then $\langle C, d \rangle \in \tau$ iff $\langle C', d' \rangle \in \tau$ and $\langle C'', d'' \rangle \in \tau$ and $d = \min(d', d'')$
4. if $C = C' \lor C''$ then $\langle C, d \rangle \in \tau$ iff $\langle C', d' \rangle \in \tau$ and $\langle C'', d'' \rangle \in \tau$ and $d = \max(d', d'')$
5. for all $C \sqsubseteq C' \in \mathcal{T}$: if $\langle C, d \rangle \in \tau$ and $\langle C', d' \rangle \in \tau$ then $d \leq d'$
6. if $C = \top$ then $\langle C, 1 \rangle \in \tau$.
Fuzzy Types vs. Individuals

Individuals
- Basic elements to compose interpretations
- Are assigned elementary properties that can be observed (wrt. an interpretation)
- Are interrelated with other individuals (to a certain degree)

Fuzzy Types:
- (Propositionally consistent) syntactic view on the properties of a possible individual
- State what elementary and complex properties can be observed about
- Modal properties constrain the way the individual can be interrelated to other individuals

Hence: Types are syntactic correspondents to individuals (used in interpretations for \mathcal{K})

$\langle C, d \rangle \in \tau \sim$ the individual represented by τ is a member of C to degree d
Set of all Types = Vocabulary to construct any interpretation \mathcal{I} of \mathcal{K}

- We simply need to fix how to interconnect the individuals they represent

Canonical Interconnection and Interpretation:

- Given a set T of \mathcal{K}-types, interconnect them in a standard (or canonical way) $\Delta_R(\tau, \tau')$ (see our paper)
- The resulting canonical interpretation $\mathcal{I}(T)$ is almost directly a model of the input KB \mathcal{K}

$$C^{\mathcal{I}(T)}(\tau) = d \text{ iff } \langle C, d \rangle \in \tau$$

for almost all $C \in \text{cl}(\mathcal{K})$.

If (*) would be satisfied for all $C \in \text{cl}(\mathcal{K})$, then we would have $\mathcal{I}(T) \models C \sqsubseteq C'$ for all $C \sqsubseteq C' \in \mathcal{T}$ by clause (5) in our definition of \mathcal{K}-types, i.e. our canonical interpretation would be a model for \mathcal{T}.
What is the Problem with the Canonical Interpretation?

We know that

\[C^{\mathcal{I}(T)}(\tau) = d \text{ iff } \langle C, d \rangle \in \tau \quad (\ast) \]

for almost all \(C \in \text{cl}(\mathcal{K}) \).

That (\ast) is satisfied by \(\mathcal{I}(T) \) is straightforward for the cases of concept names \(C, \top \), or complex concepts of the form \(C = C' \cap C'' \), \(C = C' \cup C'' \), \(C = \neg C' \), as well as the \(C^{\mathcal{I}(T)}(\tau) \geq d \) case for \(C = \forall R.C \) by our definition of types and the definition of \(\Delta_R \).

The only cases where (\ast) can be violated by \(\mathcal{I}(T) \) is for types \(\tau \) containing universally role restricted concepts \(\forall R.C \) that are assigned a possibility degree which is too small (wrt. the \(R \)-successor types \(\tau' \) in \(\mathcal{I}(T) \)) to properly reflect the semantics of \(\forall R.C \) in \(\mathcal{ALC} \), i.e. to coincide with the greatest lower bound of the set

\[\{ \max(1 - R^{\mathcal{I}(T)}(\tau, \tau'), C^{\mathcal{I}(T)}(\tau')) \mid \tau' \in T \} \]
How to fix this Problem?

Call any type \(\tau \) containing universally role restricted concepts \(\forall R.C \) that are assigned a possibility degree which is too small (wrt. the \(R \)-successor types \(\tau' \) in \(\mathcal{I}(T) \)) to properly reflect the semantics of \(\forall R.C \) in \(\mathcal{ALC} \), i.e. does not coincide with the greatest lower bound of the set

\[
\{ \max(1 - R^{\mathcal{I}(T)}(\tau, \tau'), C^{\mathcal{I}(T)}(\tau')) \mid \tau' \in T \}
\]

a bad type (wrt. the given set of types \(T \)).

Bad types \(\tau \in T \) can be detected easily: they satisfy that there exist \(R \in R \), \(C \in C(\Sigma) \), \(d \in \text{PossDeg}(\mathcal{K}) \) s.t. \(\langle \forall R.C, d \rangle \in \tau \) and for all \(\tau' \in T \): if \(\langle C, d' \rangle \in \tau' \) then \(\max(1 - \Delta_R(\tau, \tau'), d') > d \).

Basic Idea: Bad types are the only trouble that prevent us from ending up with a model for \(\mathcal{T} \). Remove (iteratively) all bad types from \(T \)!
Computation of a Canonical Model by Type Elimination
The Canonical Model is the “Maximal Model”

Lemma
Let $\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I})$ be any model of $\mathcal{K} = (\mathcal{T}, \mathcal{A})$. For each individual $o \in \Delta^\mathcal{I}$ we define its corresponding type

$$\tau(o) := \{\langle C, d \rangle \in \text{cl}(\mathcal{K}) \times \text{PossDeg}(\mathcal{K}) | C^\mathcal{I}(o) = d\}$$

Then, $\Delta_R(\tau(o), \tau(o')) \geq R^\mathcal{I}(o, o')$ for all $o, o' \in \Delta^\mathcal{I}$.

► Last step: Check an ABox model can be derived from $\mathcal{I}(T^*)$
Our Decision Procedure **FixIt**(\(\text{ALC}\))

procedure satisfiable\((\mathcal{K})\): boolean

\(T := \{ \tau \mid \tau \text{ is a } \mathcal{K}-\text{type} \};\)

repeat

\[
T' := T;
T := T' \setminus \text{badtypes}(T');
\]**until** \(T = T'\);

if there exists a total function \(\pi : \text{Ind}_A \rightarrow T\) s.t. \(\langle C, d' \rangle \in \pi(o)\) and \(d \leq d'\) for each \(\langle o : C \geq d \rangle \in A\), and \(\Delta_R(\pi(o), \pi(o')) \geq d\) for each \(\langle R(o, o') \geq d \rangle \in A\) **then**

return true;

end

return false;

function badtypes\((T)\) : \(2^T\)

return \(\{ \tau \in T \mid \langle \forall R.C, d \rangle \in \tau\) and for all \(\tau' \in T\): if \(\langle C, d' \rangle \in \tau'\) then \(\max(1 - \Delta_R(\tau, \tau'), d') > d\}\);
Future Work

- Study means of **implicit representation of sets of fuzzy types** known from Symbolic Model Checking [McM93], in particular OBDDs.
- A major question concerning optimization: **how to implement the final test of the algorithm efficiently**, e.g. by heuristic search using the information in the ABox effectively to find the required mapping.
- The **integration of optimizations** such as full vs. lean representations or particle vs. types as discussed in [PSV06].
- **Evaluate the efficiency** of the method by an implementation and comparison to tableau-based systems for FDLs.
- **Study the bottom-up variant** of KBDD in the context of FDLs too, check if the integration of ABoxes can be done more efficiently in such a variant.
- **Investigate** to what extend the method can cover other semantics for FDLs (e.g. other t-norms) and extended constructs, such as fuzzy modifiers and concrete domains.
Volker Haarslev, Hsueh-Ieng Pai, and Nematollaah Shiri.

Uncertainty Reasoning for Ontologies with General TBoxes in Description Logic.

Uwe Keller and Stijn Heymans.

On Fixpoint-based Decision Procedures for Fuzzy Description Logics I.
Available for download at: http://www.uwekeller.net/publications.html.

Uwe Keller and Stijn Heymans.

Fuzzy description logic reasoning using a fixpoint algorithm.

Yanhui Li, Baowen Xu, Jianjiang Lu, and Dazhou Kang.

Discrete Tableau Algorithms for $FSHI$.

Kenneth L. McMillan.

Symbolic Model Checking.

Vaughan R. Pratt.

A Near-Optimal Method for Reasoning about Action.
Guoqiang Pan, Ulrike Sattler, and Moshe Y. Vardi.
BDD-based decision procedures for the modal logic K.

Umberto Straccia and Fernando Bobillo.
Mixed integer programming, general concept inclusions and fuzzy description logics.

Giorgos Stoilos, Giorgos B. Stamou, Jeff Z. Pan, Vassilis Tzouvaras, and Ian Horrocks.
Reasoning with very expressive fuzzy description logics.

George Stoilos, Umberto Straccia, George Stamou, and Jeff Pan.
General Concept Inclusions in Fuzzy Description Logics.

Umberto Straccia.
Reasoning within Fuzzy Description Logics.

Umberto Straccia.
Transforming Fuzzy Description Logics into Classical Description Logics.