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The popularity of ontologies for representing the semantics behind many real-world domains has 
created a growing pool of ontologies on various topics. While different ontologists, experts, and 
organizations create the vast majority of ontologies, often for closed world systems, their domains 
frequently overlap in an open world system, such as the Semantic Web. These overlapping ontologies 
sometimes model similar or matching theories, that may be inconsistent. To assist in the reuse of these 
ontologies, this paper describes a technique for enriching manually created ontologies by 
supplementing them with inductively derived rules, and reducing the number of inconsistencies. The 
derived rules are translated from decision trees created by executing a tree based data mining algorithm 
with probability measures over the data being modeled. These rules can be used to revise the ontology 
adding a higher level of granularity, in order to identify possible similarities missed by the original 
ontologists. We then discuss how this may be applied to ontology matching. We demonstrate the 
application of our technique by presenting an example, and discuss how various data types may be 
treated to generalize the semantics of an ontology for an open world system. 
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1. Introduction 

In today’s open community, more organizations are willing to share their data, in the hopes of improving 
their processes through collaboration. A problem arises when their internal, closed world, information and 
assumptions are un-interpretable in the open-world environment. Upper ontologies such as DOLCE [14], 
OpenCYC [22], and SUMO[23], have been used to serve as a place for defining general concepts, heavily 
based on natural language and common sense. Cross-references through such general concepts has been 
envisioned as helping in matching one ontology to another, promoting their reusability, assisting in 
automated inference and natural language processing [11]. Manual ontology creation and matching has 
been conducted by ontologists and subject matter experts, based on their experiences and context [12], but 
is time consuming and error prone [12].  

We propose an algorithm for enhancing an existing ontology2 with decision trees (DT) obtained from 
domain specific data, and refining observations made, for the purpose of increasing the probability of 
finding a match between ontologies. In previous work, ontologies have been utilized to build decision trees. 
As demonstrated in the development of the Ontology-driven Decision Tree (ODT) algorithm [29], 
ontologies provide ISA relations to link instances in the data with super-classes in the ontology. ODT 
considers an attribute’s information gain, but modifies the decision tree by inserting the super-class of each 
instance from the ontology as a sub-node, instead of the actual instances. A similar approach to ODT was 
used in combination with user ratings to develop a recommender system called SemTree [5]. The advantage 
in using an ontology is that the key factor of the building process, the information-gain used to associate an 
attribute to a concept, is based on the attribute’s semantic relation to that concept, in addition to its value as 
in traditional DTs. This paper proposes using those semantic relationships to create identification rules, in 
the form of DTs, to differentiate concepts from each other, based on their relationships in the ontology. 

A possible domain where this is applicable is in scientific research, where the results are only as accurate 
as their underlying data. When qualifying collected specimens or observed phenomena, the researcher often 
relies on a combination of data-driven and theory-driven information [4]. In fields such as geology, 
qualifying various types of rock depends greatly on the specimens found and the geologist’s knowledge 
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about the region, rock types, and properties which are infrequently observed but theoretically important. 
Due to personal bias, some theoretical knowledge may be used incorrectly due to incorrect qualification of 
the location, for example as a lake instead of stream. Brodaric et al. [4] observed that more consistent, and 
presumed correct, qualifications were exhibited using data-driven information, versus theory-based. 

For example, the classification of cat, tiger, and panther as subclasses of felinae do not have enough 
non-lexical information to differentiate them from each other. The addition of physical attributes such as 
weight ranges or geographical locations may provide information which allows for differentiation. Further, 
attribute level information may be consistent amongst the instances observed by other ontologists, even 
when it does not apply to their domain. If so, it may be used to match these concepts3 at a more detailed 
level based on a learned model from instance data [11], in the form of DTs, which are association with 
edges in the ontologies. As will be expanded on in Section 4, the consistency demonstrated between 
clusters in Figure 1 may be used to match the classified concepts from one ontology to another. In section 2 
we give relevant background information on the covered topics, and describe how it may be used for 
ontology matching4. Section 3 gives a detailed definition of our contribution, the granulation algorithm. In 
Section 4 we expanded on the applicability of the algorithm, and summarize our findings in section 5.  

 
      weight      weight 
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height

 
      (a)      (b) 

Fig 1. Classifying instances using concepts of different ontologies based on a pair of attributes weight and 
height, reveal similarity correlation between the same pair of attributes, in separate ontologies (a) and (b). 

2. Background Knowledge 

2.1 Description Logic and Uncertainty 

The current work on including inductively derived information has focused on classification of assertions 
(ABox) in a Description Logic (DL) knowledge base, by associating uncertainty to its terminology (TBox). 
Description Logic provides constructors to build complex concepts and roles out of atomic ones [10], with 
various extensions derived to handle different types of constructs [17][10]. In recent years, much attention 
has been placed on the SH family of extensions, because it provides sufficient expressivity, useful for 
intended application domains. More recently, the SHOQ(D) extension has added the capability to specify 
qualified number restrictions, and the SHOIN(D) extension has combined singleton classes, inverse roles 
and unqualified number restrictions. Further, SHOIN(D) has been used to create the Web Ontology 
Language (OWL), which has been adopted as the web ontology standard by W3C [17]. OWL implements 
the open world assumption (OWA) [32] that if a statement is unknown it has not been falsified. In contrast, 
the closed world assumption (CWA) states that if a statement is not known to be true, it is false. These 
assumptions are related to defaults, which resolve ambiguities and missing values in a closed world system, 
benefits which cannot be assumed in the open world. New developments in inductive methods have been 
proposed to close the gap between CWA defaults and any ambiguities they introduce in the open world. 

In the past several years, significant contributions have been made to introducing uncertainty to DL. 
Some notable ones have been the introduction of P-SHOQ (D)[15], a probabilistic extension to SHOQ (D) 
[18][24], fuzzy SHOIN (D) [26], a fuzzy extension to SHOIN (D) [17], as well as BayesOWL [8] and 
PR-OWL [6], probabilistic extensions to OWL. These techniques offer new ways of querying, modeling, 
and reasoning with DL ontologies. P-SHOQ (D) has provided a sound, complete, and decidable reasoning 
technique for probabilistic Description Logics. Fuzzy SHOIN (D) demonstrates subsumption and 
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entailment relationship to hold to a certain degree, with the use of fuzzy modifiers, fuzzy concrete domain 
predicates, and fuzzy axioms. Fuzzy SHOIN (D) is an extension to work done on extending the ALC DL 
with fuzzy operators [27][28] (see Straccia et. al. [26] for a more complete list of extensions). BayesOWL 
converts an OWL TBox to a directed acyclic graph (DAG) with concept and relation nodes associated with 
Bayesian probabilities. PR-OWL is a language as well as a framework which allows ontologists to add 
probabilistic measures and reasoning to OWL ontologies. PR-OWL implements Multi-Entity Bayesian 
Networks (MEBN) [21], which extends axioms with Bayesian Network (BN) probabilities to first-order-
logic (FOL) expressiveness. It should be noted that the key differences between probabilistic and fuzzy 
systems are that fuzzy uncertainty represents a degree of vagueness and lacks determinism [15], while 
probabilities represent dependencies and allow for deterministic reasoning.  

A key task in probabilistic description logic is identifying which attributes to use, the relationships 
between them, and calculating the probabilities assigned to those relations. The goal is the capability of 
predicting the likelihood of corresponding attribute values. Various techniques have been applied to create 
probabilistic description logics. In [13], classification is performed by deriving a classification equation for 
non-linear models with the use of a support-vector-machine (SVM) classifier, with the optimal equation 
features, called kernel features, derived with genetic programming [7]. Rough Sets [25] have been applied 
to create a static probabilistic DL ontology [19], for the purpose of reasoning over data from different 
sources. In this work [19], rough fuzzy SHOIN (D) is introduced as an extension to fuzzy SHOIN (D). 
BayesOWL creates probabilities for OWL DLs by converting a DL to a DAG, and assigning probabilities 
to each edge using a conditional probability table (CPT), for two types of nodes; concept nodes and L-
nodes (logical relations) [8]. As an example, the CPT probabilities for an equivalent L-node between c1 and 
c2, is True=1.0 if [(c1∧c2) ∨ (¬c1∧¬c2)]=True, and True=0.0 otherwise, while a complement L-node is 
True=1.0 if [(¬c1∧c2) ∨ (¬c1∧¬c2)]=True, and True=0.0 otherwise.  

2.2 Decision Trees 

As a data structure, decision trees are used to represent the logical structures of classification rules for 
domain specific empirical data. The basic algorithm selects the attribute with the highest information gain 
for a particular class, and creates disjoint subsets based on that attribute’s values. Ordinal attributes are split 
into two branches on the < and ≥ number restriction. For example the size attribute could be split to large 
and small classes based on the number of instances and their size values. Nominal attributes are treated as 
categorically disjoint sets, with as many branches as there are values. For example, the transitive relation, 
and more specifically enumerable instances of SHOQ, would be able to express the ontology O class relation 
xRy : [x ∈ {Country} ∧ y ∈ {France, Italy, Spain}]. A DT classifying Country would be represented with a 
parent node Country, and three sub-nodes, France, Italy, and Spain. These could be further split on an 
ordinal attribute such as population size ranges, or another nominal attribute such as language. These 
subsets are smaller in cardinality, but more exact in precision in classifying a concept. The key factor in the 
classifying process is the attribute and value combinations which identify concepts best, which make up the 
classification rules. As mentioned in Section 1, the advantage in using an ontology is that this 
attribute/value factor is guided by the attribute’s semantic relation to a particular concept. As described 
further in Section 3.2, this advantage is utilized in our algorithm to build DTs which select the most 
appropriate attributes and values which identify a semantic relationship deductively from the data. 

2.3 Granular Computing  

In section 2.1, we presented current work on introducing uncertainty to DL. As can be seen, it is beneficial 
to study the individual elements which make up a concept or cluster of concepts. It gives us a new 
understanding of what we viewed as atomic structures, and a new way of reasoning with them. This is the 
fundamental goal of granular computing [34], to view elements as parts of groups, and study the reasons 
why elements are grouped together by indistinguishability, similarity, proximity, and functionality [35].  

Definition 1 (Granule). Granules are partitions of object space where objects are indistinguishable [19]. 

Any proposition which holds for a granule Gr, also holds for the complex concepts Gr is meant to identify, 
within a group of similar concepts. The benefits of using rough and fuzzy sets, is that they provide a level 



 

of granularity through inductive means, by defining crisp sets from fuzzy or possibilistic scoring models 
[30][19], and similar to DTs, are non-parametric [31]. The attributes used with granular boundaries are 
completely induced by the instances themselves. When viewed in the scope of ontologies, the notion of a 
granular ontology has been defined as “an inventory of entities existing in reality all of which belong to the 
same level of some granular partition” [2]. The authors argue that both the enduring entities such as 
substances, qualities, roles, and functions (SPAN), as well as perduring entities such as processes and their 
parts and aggregates (SNAP), are required in order to give a non-reductionism account of complex domains 
of reality. By inductively reducing the dimensionality of a concept, both rough sets and DTs are able to 
provide discrete partitions, required to identify and distinguish instances. Bitnner et al. [1] identifies the 
requirements for crisp and vague boundaries, which are provided by rough and fuzzy sets, respectively.  

2.4 Ontology Matching 

Ontology matching consists of matching a concept from one ontology to another. Several issues have been 
brought up as obstacles in the manual matching process [12][16], specifically inconsistency, incompletes 
and redundancy. This results in incorrectly defined relationships, missing information, or simply human 
error. Various techniques have been identified by Euzenat et al. [11], for automated and semi-automated 
matching techniques. Specifically instance identification techniques, such as comparing data values of 
instance data, are described to determine data correspondences, especially when ID keys are not available. 
When datasets are not similar to each other, disjoint extension comparison techniques are described, which 
can be based on statistical measures of class member features matched between entity sets [11]. The 
information created by our algorithm is targeted at datasets for such matchings. Random effects of DT 
classification algorithms can be stabilized using techniques such as bagging and stacking [33], where 
multiple trees are created and combined, and increase similarity measures of derived models. BayesOWL 
has been proposed to perform automatic ontology mapping [9] by associating probabilities with text based 
information, and using Jeffrey’s Rule to propagate those probabilities. Text documents are classified using 
a classifier such Rainbow5, and probabilities are assigned using the CPT process described in section 2.1. 
Tools such as OWL-CM [4] have begun looking at how similarity measures and uncertainties in the 
mapping process can be improved to improve access correspondences between text ontology entities. 

2.5 Rule Insertion and Enhancement 

Generating rules by inductive means allows us to add the axioms which govern an ontology. It would also 
be beneficial to enhance existing axioms, by introducing exceptions, and splitting axioms into two or more 
variations, to cover a broader scope of observations. To maintain a level of consistency, we require an 
increase in the granularity of the enhanced axiom, as it now covers a less broadly described observation. 
Ripple down rules (RDR) [20] allow us to add knowledge to existing axioms represented by a hierarchical 
structure, through such exceptions. This prolongs the usability and maintainability of existing rules, while 
they are refined and added to [20]. RDR exceptions can also introduce closed world defaults [20].  

 
Fig 2. An ontology, split by levels n, which are used for iterating edges in our algorithm in section 3.2.  
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3. Ontology Granulation 

In this section, we describe our algorithm for adding granularity to ontologies, by using the decision trees 
induced from the data built to create the ontology. Our work differs from ODT [19] and SemTree [5], in 
that while they use an ontology to build a DT, we use DTs to add granules to an existing ontology. The 
deductively derived DTs will hold classification rules which may overlap with another set of rules for 
similar concepts in a different ontology. Our sample ontology is a small hierarchy of objects, with a 
breakdown on physical objects, and further broken down to grains and animals, as depicted in Figure 2. 
Target ontologies are ones which can be represented by a directed acyclic graph (DAG).  

3.1 Database Preparation 

Our algorithm uses supervised learning to build a decision tree model of the instances, the ontology O is 
trying to describe semantically. In order to apply the learning algorithm, O must first be represented in a 
format which can be used to perform classification. For that reason, instances which O describes are 
represented by a tuple, and for our purpose, we assume it is stored in a database DB. For a relational 
database, multiple tables must be denormalized. In this process, all attributes and relationships are brought 
into a single table, with logical and hierarchical relations being represented as attributes in a single row. It 
is important to represent concepts at equivalent levels6 by the same column Cn, with different classes as 
separate values5. This is depicted in Figure 2, with all nodes at level n=4, for example, representing possible 
values for the column Category-4 = C4 = {bird, mammal, grain, fish, reptile}. Table 1 demonstrates this 
hierarchy as a denormalized table with all other attributes. Multiple parent nodes are represented by a 
duplication of records with different category values, as illustrated by instances 10 to 14, being represented 
by a different parent in Category-4, reptile and fish, but the same Class value of small-fish. 

Definition 2 (Data preparation). Given the ontology O being granularized, the related database DB has  
f := number of attributes in normalized version of DB 
ai  := attribute; i = { 0, ... , f } 

value of ai  if ai is defined vi  := { null  otherwise 
Cn := ai representing a concept group at level n; i.e. {Category-1, … , Class}  

Table 1. Normalized Data Sample 
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1 Algeria 12 4 6 115 N Y N Y Y 63 small physical organism animal mammal small-cat 
2 Amrcn-Samoa 4 1 3 4 N Y N Y Y 353 tiny physical organism animal mammal tiny-cat 
3 Armenia 51 14 29 8282 N Y ? Y Y 354 ? physical organism animal mammal huge-cat 
4 New-Zealand 7 1 3 2 Y Y N Y Y 469 small physical organism animal bird small-bird 
5 New-Zealand 14 6 6 50 Y Y N ? Y 617 ? physical organism animal bird mid-bird 
6 Åland-Islands 17 10 17 289 Y ? N Y Y 767 large physical organism animal bird large-bird 
7 Antarctia 5 5 28 560 N Y Y Y ? 841 ? physical organism animal bird penguin 
8 Antig&Brbda 89 58 99 255519 N Y N Y Y 909 mid physical organism animal mammal human 
9 Aruba 75 55 43 88688 N Y N Y Y 912 mid physical organism animal mammal human 

10 New-Zealand 8 1 3 7.2 N N Y Y Y 1183 small physical organism animal fish small-fish 
11 New-Zealand 8 1 3 7.2 N N Y Y Y 1183 small physical organism animal reptile small-fish 
12 New-Zealand 7 1 4 8.4 N N Y Y Y 1185 ? physical organism animal fish small-fish 
13 New-Zealand 7 1 4 8.4 N N Y Y Y 1185 ? physical organism animal fish small-fish 
14 New-Zealand 7 1 4 8.4 N N Y Y Y 1186 ? physical organism animal reptile small-fish 
15 Bahrain 0.001 0.001 0.001 0.000 ? ? ? N Y 945 small physical organism plant grain small-plant 
16 Anguilla 1.001 0.001 3.001 0.000 ? ? ? N Y 1100 mid physical organism plant grain mid-plant 
17 Bahamas 4.000 3.000 10.00 1.200 ? ? ? N Y 1164 ? physical organism plant grain large-plant 
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initially creating the DTs, since the parent-to-child concept classification is done in isolation from the rest of the tree. 



 

3.2 Ontology Granulation Algorithm 

The granulation process involves deriving rules which use ordinal number ranges and nominal category 
identifiers to classify specific ontology concepts. By identifying relationships between attributes in 
classifying an ontology concept, a class signature7 may become apparent. This signature may later be used 
for ontology matching. We begin by listing elements needed to prepare the ontology for classification.  

Definition 3 (Ontology hierarchy).  A given ontology O has a hierarchical representation which contains 
Oh  := hierarchical representation of O (see Figure 2) 

levels(Oh) := number of levels in Oh 
n  := { 1, ... , levels(Oh) }; where n = 0 is the tree root 
cnj

 := concept ∈ O  at level n; where  j = { 0, ... , |Cn| } 

|c| := number of instances classified as c 
edge(cnj 

, cn-1k 
) := edge between node cnj

 and its parent node cn-1k
 

Definition 4 (Attribute relevance). The attributes chosen to build a decision tree to granularize cnj
, depend 

on rank(cnj
, ai), which is the relevance of ai in classifying cnj

 and can be chosen by an expert or 
automatically through a ranking algorithm such as Definition 5.  

Attributes of DB, mainly, A = { a0, a1, …, af }, are selected into the subset An : An ⊆ A, based on their ability 
to classify concepts at level n, and construct a DT. When constructing DTs, however, only attributes which 
are required to differentiate between DT models are included in the final tree. This subset Am : Am ⊆ An, is 
chosen to granularize cnj

.  

When choosing an attribute automatically based on its contribution to classification, various rankings 
can be used. The data mining tool we are using is an open source package called Weka [33], which 
provides several algorithms, such as information gain, entropy, and principal component. The information 
gain algorithm has produced the best results for our dataset. 

Definition 5 (Information gain)8. We evaluate the worth of an attribute by measuring the information gain 
with respect to the class. InfoGain(Class, Attribute) = H(Class) - H(Class | Attribute). 

Our experience has indicated that choosing an attribute which is ranked significantly less than the attribute 
representing the parent node of cnj

, Equation 2, will prevent choosing ai which resembles a parent node, and 
cause classification to suffer from over-fitting, producing less meaningful classification rules. In the same 
sense, attributes ranked closely to ones representing child nodes or which are close to 0 should be avoided, 
Equation 3, otherwise they will have a relatively high level of misclassification. 

rank(ai) ≪ rank(cn-1j
 ) . (2) 

0 ≪ rank(cn+1j
) ≪ rank(ai) . (3) 

Definition 6 (Concept granulation). Given the set Am, attributes utilized by the DT, we use a classification 
algorithm9 which produces several Bayesian models of the concept cnj

, as leaf nodes of the DT. Each leaf 
node, which we call a granule Gr, produced  

σ = Bayesian probability of classifying cnj
 correctly with a Gr.  

ϕ = coverage (number of instances in a Gr classifying cnj
) out of |c|. 

Pr = σ (ϕ / |c|) : probability of Gr being correct and its accuracy covering 
entire set of cn instances. 

                                                             
7 By signature, we mean an identifying characteristic of the object being classified, and not a signature which describes 

non-logical symbols of a formal logic, or a signature in cryptography. 
8 Definition taken from the Weka 3.6.0 module weka.attributeSelection.InfoGainAttributeEval 
9 The Weka 3.6.0 module weka.classifiers.trees.J48 contained good options for controlling the size of the tree, but the 

weka.classifiers.trees.NBTree module provided trees with the more useful Naïve Bayes classifiers at the leaf nodes.   



 

where the  k-th granule Grk is comprised of a DT branch, producing an associated clause with 
Op  ∈ { ≤, >, =}. 

Prk Grk(cnj
 ) ← (ax Op0 vx) ∧ (ay Op1 vy) ∧ … ∧ (az Opn vz) . 

The clause derived by the classification process uses values associated with the instances in the learning 
dataset. This places a dependency on all probabilities and the given value vi of each used attribute ai in the 
associated granule Gr. Any attribute not supplied with a value acts as a wild card and increases the 
probability (PR) of the associated granule Gr, while decreasing the accuracy. For probabilities to be 
meaningful, the number of instances of concepts should be approximately equal. This ensures each concept 
has equal representation in the DT. For example, if 95% of observations are of concept A and 5% of 
concept B, B will not be represented by the DT, as the probability of incorrectly choosing A is only 5%. 

Definition 7 (Concept signature). Given a set of granules Grk used to classify cnj 
, we create a clause with 

Ω = Probability of cnj
, calculated as sum of cn probabilities (Pr) with an 

associated coverage |c| . 
Ωj Sigj(cnj

 ) ← (PrxGrx ) ∨ (Pr yGry ) ∨ … ∨ (PrzGrz ) . 

The basic algorithm, as described below, discovers a set of features important 10 to the identification and 
differentiation of a set of classes (steps 1 - 3). It then uses the features to build a DT (step 4), which results 
in a set of rules that identify the classes with different levels of coverage, accuracy, and probability. Each 
concept has an associated concept signature and probability (step 5). The derived rules are used to build the 
signature clause (step 8) and probability (step 9). The concept signature is then associated with c in the 
ontology hierarchy Oh (step 11). 

Granulation Algorithm 
1) Denormalize DB, applying ontology classes as attributes (see Section 3.1 for a 

discussion and Table 1 for an example). 
2) For each n ∈ levels(Oh) 
3)  Select attribute set An using rank(ai), to best classify Cn, by combining: 
   - Ontology author 
   - Subject matter expert (SME) 
   - Definition 4 and 5. 
4)  Execute classification algorithm (Definition 6) to produce a DT classifying 

Cn, producing models in the form of conjunctions of (ai Op vi) as branches in 
the tree. 

5)  Initialize Sigj and associated probability Ωj for each cnj
. 

6)  For each k ∈ z; where z is the number of granules (leaf nodes) classifying c. 
7)   Capture entire branch of a DT model for cnj

, giving Grk and associated Prk. 

8)   Append Grk(cnj
) to the Sig(cnj

) clause with the OR operator. 

9)   Ωj = Ωj + Prk . 
10)  End 
11)  Associate ΩjSig(cnj

) to edge(cnj
, cn-1k

 ) using ripple down rule (RDR). 

12) End 

3.3 Matching Granules 

The process of matching granules is comprised of 1) classifying an ontology node using An, 2) associating 
the derived signature Sigj with that concept’s node, and finally 3) identifying characteristics in Sigj which 
resemble another signature Sigx, of another ontology’s concept. Guided by the edges in hierarchies of the 
individual ontologies (by associating classification targets with ontology nodes as in Figure 3), various 
combination of attributes reveal resembling patterns, as was demonstrated in Figure 1, and is expanded on 
in the use case in section 4.1. The implementation of the matching process is outside the scope of this 
paper, but we provide key ideas and issues which we have identified in section 5, and covered the state of 
the research in section 2.4. With successful granulation and concept matching, any existing signatures in 
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the form of FOL rules, DL roles, or hierarchical DTs are attached to the edges or relations between 
concepts, possibly through the use of RDR. 

 
Fig 3. Concepts are mapped using derived signatures between two ontologies from section 4.1.1. 

4. Motivating Example 

4.1 Commerce Scenario 

In a typical commerce use case, a manufacturer’s goal is to find customers interested in purchasing their 
product. Our manufacturer Mats for Cats (MAC) has a set of criteria identifying the size and weight of cats, 
on which they base their product design. What they need now is a way to find a target market to advertise 
their product to. As part of the Semantic Web, the group Cats as Pets (CAP) has opened up their database 
and associated ontology of cat owners, with various types of felinae. CAP stores easily obtainable 
information about their cats, such as height, length, weight, colour, and location, and does not store a full 
ontology like the one stored by the Animal Diversity Web11 (AWD) database. Also, because this is a world 
wide group, the pets range from house cats to large felines such as tigers. As a result, the stored information 
will vary, but correlation between attributes will classify various types of felinae. The MAC and CAP 
datasets are simulated, but suffer from real-world data issues such as incomplete and incorrect data, in 
addition to exhibiting features required for the matching process, to and test the attribute ranking and 
classification algorithms for their ability to handle such cases. Related data is required to map concepts, and 
the hypothesis is that even though perceptions may differ, the underlying occurrences will remain 
somewhat consistent [11]. Using the NBTree classifier in Weka, we classify Felinae as F = {tiny-cat, 
small-cat, mid-cat, large-cat, huge-cat}, and derive the DT in Figure 4. Each leaf node represents a 
Bayesian model for each concept, with various degrees of probability σ and coverage ϕ, and represent a 
single granule Gr. At this level, the decision is being made on height, width, weight, and country, but 
country was omitted by the DT, due to its low rank in its contribution to the classification. 

4.1.1 MAC Felinae Ontology Granulation 

 
Fig 4. NBTree classifying MAC Felinae based on height, width, weight (omitted) and country (omitted). 
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Table 2. MAC granules build from the decision tree in Figure 2, using height (x) and width (y). 

Pr Model 
σ ϕ Granule 

0.89 101 Gr0(tiny-cat)  ← (x ≤ 10.5) ∧ (y ≤ 2.5) ∧ (x ≤ 2.99) A 
0.09 9 Gr1(small-cat)  ← (x ≤ 10.5) ∧ (y ≤ 2.5) ∧ (x ≤ 2.99) 

B 0.92 44 Gr2(small-cat) ← (x ≤ 10.5) ∧ (y > 2.5) ∧ (x > 2.99) 
C 0.90 34 Gr3(small-cat) ← (x ≤ 10.5) ∧ (y > 2.5) ∧ (y ≤ 4.5) ∧ (x ≤ 8.5) 

0.58 13 Gr4(small-cat) ← (x ≤ 10.5) ∧ (y > 2.5) ∧ (y ≤ 4.5) ∧ (x > 8.5)  D 0.29 6 Gr5(mid-cat) ← (x ≤ 10.5) ∧ (y > 2.5) ∧ (y ≤ 4.5) ∧ (x > 8.5) 
E 0.64 6 Gr6(mid-cat) ← (x ≤ 10.5) ∧ (y > 2.5) ∧ (y > 4.5) 
F 0.87 26 Gr7(mid-cat) ← (x > 10.5) ∧ (y ≤ 10) ∧ (y ≤ 14.5) 
G 0.78 93 Gr8(large-cat) ← (x > 10.5) ∧ (y ≤ 10) ∧ (y > 14.5)  
H 0.96 105 Gr10(huge-cat) ← (x > 10.5) ∧ (y > 10) 

 

Table 3. MAC Signatures classifying Felinae built from granules in Table 2. 

  Ω 
Σ Pr |c| 

Signature 

0.89 101 Sig0(tiny-cat) ← (Pr0Gr0) 
0.78 100 Sig1(small-cat) ← (Pr1Gr1) ∨ (Pr2Gr2) ∨ (Pr3Gr3) ∨ (Pr4Gr4) 
0.78 60 Sig2(mid-cat) ← (Pr5 Gr5) ∨ (Pr6Gr6) ∨ (Pr7Gr7) ∨ (Pr9Gr9) 
0.78 93 Sig3(large-cat) ← (Pr8 Gr8) 
0.96 105 Sig4(huge-cat) ← (Pr10 Gr10) 

4.1.2 CAT Felinae Ontology Granulation 

 
Fig 5. NBTree classifying CAP Felinae based on height, width, weight, (omitted) and country (omitted). 

 

Table 4. CAP granules for Felinae classification based on height (x), width (y), weight (z). 

Pr Model 
σ ϕ Granule 

0.51 24 Gr0(small-cat) ← (weight ≤ 1202.4) ∧ (y ≤ 1.5) A 
0.43 20 Gr1(mid-cat) ← (z ≤ 1202.4) ∧ (y ≤ 1.5) 
0.09 4 Gr2(small-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y ≤ 3.5) ∧ (y ≤ 2.5) ∧ (x ≤ 4.5) B 0.85 45 Gr3(tiny-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y ≤ 3.5) ∧ (y ≤ 2.5) ∧ (x ≤ 4.5) 
0.38 13 Gr4(small-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y ≤ 3.5) ∧ (y ≤ 2.5) ∧ (x > 4.5)  C 0.54 19 Gr5(mid-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y ≤ 3.5) ∧ (y ≤ 2.5) ∧ (x > 4.5)  
0.15 10 Gr6(small-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y ≤ 3.5) ∧ (y > 2.5) ∧ (x ≤ 4)  D 0.80 56 Gr7(tiny-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y ≤ 3.5) ∧ (y > 2.5) ∧ (x ≤ 4)  
0.40 15 Gr8(small-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y ≤ 3.5) ∧ (y > 2.5) ∧ (x > 4)  E 0.53 20 Gr9(mid-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y ≤ 3.5) ∧ (y > 2.5) ∧ (x > 4)  



 

0.48 19 Gr10(small-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y > 3.5)] F 
0.45 18 Gr11(mid-cat) ← (z ≤ 1202.4) ∧ (y > 1.5) ∧ (y > 3.5)  

G 0.67 7 Gr12(mid-cat) ← (z > 1202.4) ∧ (y ≤ 8.5) ∧ (y ≤ 6) 
H 0.87 26 Gr13(large-cat) ← (z > 1202.4) ∧ (y ≤ 8.5) ∧ (y > 6)  
I 0.96 97 Gr14(large-cat) ← (z > 1202.4) ∧ (y > 8.5) ∧ (y ≤ 11.5) ∧ (x ≤ 24)  
J 0.95 78 Gr15(huge-cat) ← (z > 1202.4) ∧ (y > 8.5) ∧ (y ≤ 11.5) ∧ (x > 24)  
K 0.87 26 Gr16(huge-cat) ← (z > 1202.4) ∧ (y > 8.5) ∧ (y > 11.5) 

 

Table 5. CAP Signatures classifying Felinae built from granules in Table 4. 

Ω 
Σ Pr |c| Signature 

0.82 101 Sig0(tiny-cat)  ← (Pr3Gr3) ∨ (Pr7Gr7)  
0.40 85 Sig1(small-cat) ← (Pr0Gr0) ∨ (Pr2Gr2) ∨ (Pr4Gr4) ∨ (Pr6Gr6) ∨ (Pr8Gr8) ∨ (Pr10Gr10) 
0.50 84 Sig2(mid-cat) ← (Pr1Gr1) ∨ (Pr5Gr5) ∨ (Pr9Gr9)  ∨ (Pr11Gr11) ∨ (Pr12Gr12) 
0.94 123 Sig3(large-cat) ← (Pr13Gr13) ∨ (Pr14Gr14) 
0.93 104 Sig4(huge-cat)  ← (Pr15Gr15) ∨ (Pr16Gr16) 

4.2 Matching CAP and MAC Granules 
For similar or equivalent domain databases, some attributes may demonstrate similarities, not only in 
individual attributes, but also in relation to another attribute in the database. The simplest measure is 
identifying similarities between each attribute and the concepts themselves. For example, the ranges of 
width, height, and weight values grouped by Class, may exhibit similarities between the MAC and CAP 
instances, showing a correlation between these two databases for the three attributes. A granule such as 
Gr(mid-cat) ← (width > 0) ∧ (width ≤ 4) ∧ (height > 4) ∧ (height ≤ 8) ∧ (weight > 20) ∧ (weight ≤ 50), 
could represent such clusters. A definition could be built by classifying a Class with a single attribute, like 
Sig(mid-cat) ← ((width > 0)∧(width ≤ 0.7)) ∨ ((width > 1.1)∧(width ≤ 2.1)) ∨ ((width > 3.4)∧(width ≤ 4.7)). 

Further, concentrating on the intersection of weight and height, we see a pattern of clusters, as depicted 
in Figure 6 (a) and (b). By representing these cluster graphs, we see overlapping clusters from (a) to (b), 
specifically cluster A (tiny-cat), B (small-cat), and E (huge-cat). In the centre of the graphs, we see two 
clusters C (mid-cat) and D (large-cat) overlapping each other to a lesser extent. We can begin to infer not 
only a matching between the Classes represented by these clusters (tiny-cat, small-cat, etc), but also 
between the attributes themselves (height, weight, etc). 

            weight             weight   width  width 

height  

           

height

 

             

 
        (a)           (b)       (c)    (d) 

Fig 6. Attribute associations: weight × height for (a) MAC, (b) CAP; height × width for (c) MAC, (d) CAP. 

Unfortunately, not all databases are this well aligned, and various measures of similarity must be 
considered. In Figure 6 (c) and (d), the correlation between the height and width attributes are analyzed, 
without a definite cluster correlation and overlapping as was observed in Figure 6 (a) and (b). As a result, a 
mix of similarities would need to be considered as a characteristics of a classification. As with Figure 6 (a) 
and (b), (c) and (d) contains a correlation between E (huge-cat) in the top-right, and the A (tiny-cat) and B 
(small-cat) clusters in the bottom-right. Unlike (a) and (b), however, no significant correlation exists 
between mid-cat and large-cat. A series of decision trees with various permutations of attributes would 
produce the best signature, such as a combination of both sets in Figure 6, for successful matching with 
another ontology’s set of trees. 

X 



 

5. Conclusion 

5.1 Discussion 

In this paper, we present an algorithm for enhancing ontologies with inductively derived decision trees, in 
order to granulate the information being modeled by the ontology. The granulation process aims to produce 
partitions of characteristics of ontology concepts, based on the ontology’s observed instances, such that the 
concepts are indistinguishable within those partitions, as per Definition 1. We then describe how these 
granules can be used to match concepts of different but similar ontologies with each other. We apply our 
algorithm to a simulated dataset of Felines, with a matching scenario in the commerce domain. The paper 
describes potential benefits of correlated data, which describes similar concepts, and how this relation can 
be utilized. The simulated database for MAC and CAP contained key real-life database features, positive 
and negative, required to demonstrate our algorithm.  

5.2 Future Work 

In our research, we have identified several key ontology matching observations and issues. It is important 
to find attributes in one ontology which are subsumed by a hybrid attribute derived from multiple attributes 
in the other. Relevant work has been done in the field of Object Based Representation Systems (OBRS) [3], 
where looking at subsumptions made about classified instances can lead to deducing new information about 
those instances. Our granules and signatures represent ranges and clusters which identify some class. For 
ordinal values, units of measure may be less relevant then ratios of values and their ranges, specifically 
when matching concepts at higher levels. For example, identifying traits in objects may depend on a 
correlation between two or more attributes. A long life span for one animal is short for another, so when 
grouping long life span factors, for example, it would make most sense to use the “relative” life span (in the 
form of ratios) of a particular species, when comparing life expectancy factors across multiple species.  

Matching nominal attributes which may exist as sets (Colour(chair) = Red), attributes (chair.colour = 
Red) or properties (chair.Red) pose a challenge. In our preliminary research, the creation of a Boolean 
attribute in the normalized database for all possible sets or a value of an attribute or property, and assigning 
True or False to the values associated with a particular instance, the NBTree classification algorithm in 
Weka looked promising in identifying relationships between patterns of these values or sets. Properties 
such as Colour, which take on a single value, can be identified by recognizing a disjoint set amongst all 
instances, where a group of attributes (such as Red=True, Blue=False, Green=False, etc) which never have 
more then one True value for a group, can be a clue to a single set, attribute or property. During the 
matching process, any missing attributes would need to be inserted with default values of False. Further 
investigation is needed as this is a closed world assumption, which can be more harmful then beneficial. 
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