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Axiomatic First-Order Probability 
  Uncertainty is ubiquitous 

•  “Prediction is difficult, especially the future.” – Yogi Berra 
•  In an open world, attempts to nail down an unambiguous meaning and 

definite truth-value for every statement are doomed to failure. 

  Probability formalizes reasoning under uncertainty 
•  “Symbolic logic is a model [of deductive thought] in much the same 

way that modern probability theory is a model for situations involving 
chance and uncertainty.” – Enderton (2001) 

•  Probability allows us to draw useful conclusions when our knowledge 
falls short of certainty 

  There is vigorous debate over: 
•  Semantics of probability 

–  Classical? Frequency? Propensity? Subjective? Logical? 
•  How to combine probability with classical logic 
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Mathematical Probability 
  Probabilities are assigned to events 

•  Event represents uncertain outcome 
•  Mathematically, events are subsets of a sample space Ω 
•  (For uncountable Ω, we must restrict events to measurable subsets of Ω) 

  A probability measure P(⋅) satisfies the following axioms: 
•  P(A) ≥ 0 for all measurable events A 
•  P(Ω) = 1 
•  If A1, A2, … is a sequence of measurable events such that Ai∩Aj = ∅ then 

P(A1∪A2∪…) = P(A1) + P(A2)+ … 
  The conditional probability of A given B  

for any two events A and B is defined as  
a number P(A|B) satisfying: 
•  P(A|B)P(B) = P(A∩B) 



Propositional Logic and Probability 
  There is a natural way to define  

probabilities in a propositional language  
with finitely many sentence symbols 

  Each sentence symbol specifies an event 
•  Event A corresponding to sentence symbol 

Q occurs if and only if Q is true 
•  Q1 ∨ … ∨ Qn corresponds to  A1 ∪ … ∪ An 

•  Q1 ∧ … ∧ Qn corresponds to  A1 ∩ … ∩ An 
•  Similarly for the other logical connectives 

  We can define a probability measure over truth values of the Qi 
•  Probability measure on truth values of sentence symbols gives rise to  

probability for each wff 
•  Probability measure can be defined consistently and parsimoniously using 

conditional independence 
  This idea can be extended to languages with infinitely many sentence symbols 



Axiomatic First-Order Probability 
  Second-order Logic 

+  Specify probability density functions directly 
+  Represent probabilities with real numbers 
-  No completeness or compactness theorem (valid sentence may not be provable) 
-  Even logicians do not agree on semantics (or on whether it is meaningful to 

quantify over all functions and relations) 

  First-order Logic 
-  Cannot refer directly to properties, functions or sentences 
+  Represent arbitrarily fine-grained degrees of plausibility 
+  Completeness and compactness theorem (valid sentences are provable) 
+  Well-understood and universally accepted semantics 
+  Can refer indirectly to sentences (via Gödel numbers) 
+  Most SW languages are based on a subset of first-order logic 

  Second-order logic with general semantics  
•  Second-order syntax with first-order model theory 
•  Talk about sentences and retain other benefits of FOL 5 

Axiomatic First-Order Probability                   First-Order ? ✓ 



Axiomatic First-Order Probability 
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No-Go Results (i) 
  Gaifman (1964) assigned probabilities to sentences of a first-order 

language 
•  Extend original language L to a new language L* with additional 

individual constants to cover all objects in the domain 
•  Assign probability measure to quantifier-free sentences of L*  
•  Extend to probability measure on all sentences via Gaifman’s condition: 

 P(∀x ψ(x)) is supremum of P(ψ(κ1)∨…∨ψ(κn)), for all finite conjunctions ψ(κ1)∨…
∨ψ(κn) of sentences, formed by substituting constant terms of the extended 
language L* into ψ(x) 

•  Measure-model semantics defines a probability measure on possible worlds 

  Gaifman and Snir (1982) studied definability of probabilities and 
tests for satisfaction 
•  Refer to sentences indirectly via Gödel numbers 
•  Semantics restricts mathematical sublanguage to intended interpretation on 

natural numbers; therefore: 
– Probabilities are not definable on mathematical sublanguage 
– All definable probability functions on empirical sublanguage are 

“dogmatic” (assign probability zero to some satisfiable sentence) 



No-Go Results (ii) 
  Bacchus criticized Gaifman’s approach because it “fail[s] to 

address some of the main concerns of AI” 
•  Cannot represent assertions about probabilities, e.g.: 

–  “The false positive probability is less than 0.05”  
–  “Rain is more likely today than it was yesterday.” 

  Abadi and Halpern (1994) examined first-order logics that can 
reason both with and about probability 
•  “…first-order …language for reasoning about probabilities ought to have 

easily comprehensible syntax and semantics.  
•  “Ideally, the validity problem would not be worse than for first-order 

logic, and we would have a complete axiomatization…” 
•  But “…as long as [the language] is sufficiently rich, the validity problem 

for first-order reasoning about probability is wildly undecidable.” 
•  No complete axiomatization is possible  

  Undecidability results apply even if probabilities are restricted to 
rational numbers 



Addressing the Roadblocks 
  Probabilities are usually formalized as real numbers, and real 

numbers cannot be axiomatized in a first-order theory 
•  Real numbers = ordered field + least upper bound axiom 
•  Least upper bound axiom refers to all bounded subsets of the real numbers 
•  We can formulate a first-order least upper bound axiom that applies to all 

definable bounded subsets 
•  This is the theory of real closed fields 

  FOL cannot refer to sentences 
•  We can refer indirectly to sentences via their Gödel numbers 

  We cannot define a “truth function” on the natural numbers 
•  Any definable first-order probability function must be uncertain about some 

statements about the natural numbers 
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Desirable Features of Probability Logic 
  Express statements about domain and about probabilities 
  Express arbitrarily fine-grained degrees of likelihood 
  Define a probability for every sentence in the language 
  Define non-dogmatic distributions 
  Condition explicitly on all background knowledge 

(mathematical, logical, domain) 
  Discover any contradiction in finite time 
  Support learning from observation 
  Deal appropriately with infinite limits 

All these can be achieved by formalizing 
probability as an axiomatic first-order theory 



The Axioms: Real Closed Field 



The Axioms: Natural Numbers 



The Axioms: Probability  



Semantics 
  Standard first-order model theoretic semantics applies.  
  A model (or possible world) consists of:  

•  A domain D 
•  A function on Dn for each n-ary function symbol 
•  A subset of Dn for each n-ary predicate symbol 
•  An element of D for each constant symbol 

 such that every axiom of A* is true in the model. 
  Certainty restriction: Without affecting any probabilities, we can 

add an axiom schema concluding the negation of a sentence that 
provably has probability zero. 

  Measure models. If a probability is defined for every sentence 
then there is a unique measure model; otherwise there is a set of 
measure models. 
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…for the Semantic Web 

  First-order languages provide well-known 
advantages, e.g. 
•  Explicit finite computational representation 
•  Complete proof theory 
•  Compatibility with SW languages 

  Can translate to second-order language with general 
semantics 

  Provides unified semantics for a variety of 
probability languages making different expressivity / 
tractability tradeoffs 
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Thank You! 


