An Algorithm for Machine Learning with Probabilistic Description Logics

José Eduardo Ochoa Luna Fabio Gagliardi Cozman

Decision Making Lab.
Escola Politécnica - Universidade de São Paulo

URSW 2009
Ontologies are key components of the Semantic Web

Considerable effort is now invested into developing automated means for the acquisition of ontologies.
Ontologies

- Ontologies are key components of the Semantic Web
- Considerable effort is now invested into developing automated means for the acquisition of ontologies
It is natural to combine logical and probabilistic approaches to machine learning for automated ontology acquisition.

Learning ontologies expressed in Probabilistic Description Logics is a topic that has not received due attention.
Probabilistic Description Logics

- It is natural to combine logical and probabilistic approaches to machine learning for automated ontology acquisition.
- Learning ontologies expressed in Probabilistic Description Logics is a topic that has not received due attention.
Probabilistic Description Logic \(\mathcal{CRA}LC \)

- \(\mathcal{CRA}LC \) is a probabilistic extension of the DL \(\mathcal{ALC} \).
- The following constructors are available in \(\mathcal{ALC} \): conjunction \((C \sqcap D) \), disjunction \(C \sqcup D \), negation \((\neg C) \), existential restriction \((\exists r. C) \), and value restriction \((\forall r. C) \).
Probabilistic Description Logic **cRALC**

cRALC is a probabilistic extension of the DL **ALC**.

The following constructors are available in **ALC**: *conjunction* \((C \sqcap D)\), *disjunction* \(C \sqcup D\), *negation* \((\neg C)\), *existential restriction* \((\exists r.C)\), and *value restriction* \((\forall r.C)\).
Probabilistic Inclusions and their Semantics

- \(P(A|B) = \alpha \)
- \(\forall x \in \mathcal{D} : P(A(x)|B(x)) = \alpha \)
Probabilistic Inclusions and their Semantics

\[P(A \mid B) = \alpha \]
\[\forall x \in D : P(A(x) \mid B(x)) = \alpha \]
Example

\[P(\text{Animal}) = 0.1, P(\text{Animal}) = 0.6, P(\text{hasChild}) = 0.3, \]
\[\text{Human} \equiv \text{Human} \sqcap \text{Rational}, \]
\[\text{Beast} \equiv \text{Animal} \sqcap \neg \text{Rational}, \]
\[\text{Parent} \equiv \text{Human} \sqcap \exists \text{hasChild}.\text{Human}, \]
\[P(\text{Kangaroo} | \text{Beast}) = 0.4, P(\text{Kangaroo} | \neg \text{Beast}) = 0.0, \]
\[\text{MaternityKangaroo} \equiv \text{Kangaroo} \sqcap \exists \text{hasChild}.\text{Kangaroo} \]
Example

\[P(\text{Animal}) = 0.1, P(\text{Animal}) = 0.6, P(\text{hasChild}) = 0.3, \]
\[\text{Human} \equiv \text{Human} \sqcap \neg \text{Rational}, \]
\[\text{Beast} \equiv \text{Animal} \sqcap \neg \text{Rational}, \]
\[\text{Parent} \equiv \text{Human} \sqcap \exists \text{hasChild}.\text{Human}, \]
\[P(\text{Kangaroo}|\text{Beast}) = 0.4, P(\text{Kangaroo}|\neg\text{Beast}) = 0.0, \]
\[\text{MaternityKangaroo} \equiv \text{Kangaroo} \sqcap \exists \text{hasChild}.\text{Kangaroo} \]
Description Logic Learning

- Our approach to learning based on Description Logics employs methods from Inductive Logic Programming (ILP)
- ILP is a research field at the intersection of machine learning and logic programming
- In concept-learning and ILP the search space is typically structured by means of the dual notions of generalization and specialization.
Our approach to learning based on Description Logics employs methods from Inductive Logic Programming (ILP)

ILP is a research field at the intersection of machine learning and logic programming

In concept-learning and ILP the search space is typically structured by means of the dual notions of generalization and specialization.
Description Logic Learning

- Our approach to learning based on Description Logics employs methods from Inductive Logic Programming (ILP)
- ILP is a research field at the intersection of machine learning and logic programming
- In concept-learning and ILP the search space is typically structured by means of the dual notions of generalization and specialization.
Introduction Probabilistic Description Logic

CR

ALC

DL Learning Probabilistic Description Logic Learning

Results Conclusions

Probabilistic Description Logic Learning

In a probabilistic setting the covers relation is given by:

Probabilistic Covers Relation

\[\text{covers}(e, H, B) = P(e|H, B). \]
Learning in \texttt{CRALC}

- Candidate hypotheses can be given by $C \sqsupseteq H_1, \ldots, H_k$, where $H_1 = B \sqcap \exists D. \top$, $H_2 = A \sqcup E$, \ldots.
- Assume each candidate hypothesis together with the example e for the target concept as being a probabilistic variable or feature in a probabilistic model.
- The learning task is restricted to finding a probabilistic classifier.
Learning in \text{CR\text{ALC}}

- Candidate hypotheses can be given by $C \sqsupseteq H_1, \ldots, H_k$, where $H_1 = B \sqcap \exists D. \top$, $H_2 = A \sqcup E$, \ldots.

- Assume each candidate hypothesis together with the example e for the target concept as being a probabilistic variable or feature in a probabilistic model.

- The learning task is restricted to finding a probabilistic classifier.
Learning in \mathcal{CRALC}

- Candidate hypotheses can be given by $C \supseteq H_1, \ldots, H_k$, where $H_1 = B \land \exists D.T, H_2 = A \lor E, \ldots$.
- Assume each candidate hypothesis together with the example e for the target concept as being a probabilistic variable or feature in a probabilistic model.
- The learning task is restricted to finding a probabilistic classifier.
Learning a Probabilistic Classifier

We use a class of simple Bayesian network models — the models of independence of causal influence (ICI) — to classification.

A particular ICI model is a Noisy-OR classifier.
The joint probability distribution of the Noisy-OR model is

\[P_M(\cdot) = P_M(C|A'_1, \ldots, A'_k) \cdot \left(\prod_{j=1}^{k} P_M(A'_j|A_j) \cdot P_M(A_j) \right). \]

It follows that

\[P_M(C = 0|A = a) = \prod_{j} P_M(A'_j = 0|A_j = a_j), \quad (1) \]

\[P_M(C = 1|A = a) = 1 - \prod_{j} P_M(A'_j = 0|A_j = a_j). \quad (2) \]
Learning the Noisy-OR Classifier

- Learning of a Noisy-OR classifier is based on the EM algorithm.
- An efficient implementation resorts to a transformation of an ICI model using a hidden variable.
The Algorithm

Input: a target concept C, background knowledge $K = (T, A)$, a training set $E = Ind_C^+(A) \cup Ind_C^-(A) \subseteq Ind(A)$ containing assertions on concept C.

Output: induced concept definition C.

Repeat
- Initialize $C' = \bot$
- Compute hypotheses $C' \models H_1, \ldots, H_n$ based on refinement operators for \mathcal{ALC} logic
- Let h_1, \ldots, h_n be features of the probabilistic Noisy-OR classifier, apply the EM algorithm
- For all h_i
 - Compute score $\prod_{e_p \in E_p} \text{covers}(e_p, h_i, B)$
 - Let h' the hypothesis with the best score
- According to h' add H' to C
- Until $\text{score}([h_1, \ldots, h_i], \lambda_i, E) > \text{score}([h_1, \ldots, h_{i+1}], \lambda_{i+1}, E)$
Experiments

Experiment were performed on a database collected from the Lattes curriculum platform
The Lattes curriculum platform is the Brazilian government scientific repository\(^1\)

- It is a public source of relational data about scientific research, containing data on several thousand researchers and students.
- A restricted database has been constructed based on 220 randomly selected documents.

\(^1\)http://lattes.cnpq.br.
The Lattes Curriculum Platform

- The Lattes curriculum platform is the Brazilian government scientific repository\(^1\).
- It is a public source of relational data about scientific research, containing data on several thousand researchers and students.
- A restricted database has been constructed based on 220 randomly selected documents.

\(^1\)http://lattes.cnpq.br.
The Lattes Curriculum Platform

- The Lattes curriculum platform is the Brazilian government scientific repository\(^1\).
- It is a public source of relational data about scientific research, containing data on several thousand researchers and students.
- A restricted database has been constructed based on 220 randomly selected documents.

\(^1\)http://lattes.cnpq.br.
The Lattes Curriculum Platform (II)
The Learned Concepts

For instance, to properly identify a professor, the following concept description was learned:

\[
\text{Professor} \equiv \text{Person} \sqcap (\exists \text{hasPublication.} \text{Publication} \sqcup \exists \text{advises.} \text{Person} \sqcup \exists \text{worksAt.} \text{Organization})
\]
A probabilistic concept for duplicate publications was learned:

\[\text{DuplicatePublication} \equiv \text{Publication} \land \lnot (\exists \text{hasSimilarTitle}.\text{Publication} \lor \exists \text{hasSameYear}.\text{Publication} \lor \exists \text{hasSameType}.\text{Publication}) \]
Some Inferences with the Learned Model

- Prior probability is low: $P(\text{DuplicatePublication}(0)) = 0.05$.
- Evidence on title similarity increases probability value:
 $$P(\text{DuplicatePublication}(0)|\exists \text{hasSimilarTitle}(0, 1)) = 0.77.$$
- Further evidence on type almost guarantees a duplicate concept:
 $$P(\text{DuplicatePublication}(0)|\exists \text{hasSimilarName}(1) \sqcap \exists \text{hasSameType}(1)) = 0.99.$$
Some Inferences with the Learned Model

- Prior probability is low: $P(\text{DuplicatePublication}(0)) = 0.05$.
- Evidence on title similarity increases probability value:

 $$P(\text{DuplicatePublication}(0)|\exists \text{hasSimilarTitle}(0, 1)) = 0.77.$$
- Further evidence on type almost guarantees a duplicate concept:

 $$P(\text{DuplicatePublication}(0)|\exists \text{hasSimilarName}(1) \cap \exists \text{hasSameType}(1)) = 0.99.$$
Some Inferences with the Learned Model

- Prior probability is low: \(P(\text{DuplicatePublication}(0)) = 0.05 \).

- Evidence on title similarity increases probability value:
 \[
P(\text{DuplicatePublication}(0) | \exists \text{hasSimilarTitle}(0, 1)) = 0.77.
\]

- Further evidence on type almost guarantees a duplicate concept:
 \[
P(\text{DuplicatePublication}(0) | \exists \text{hasSimilarName}(1) \sqcap \exists \text{hasSameType}(1)) = 0.99.
\]
Conclusions

- We have presented algorithms that perform learning of both probabilities and logical constructs from relational data for the recently proposed Probabilistic DL CR\textsc{ALC}.

- We approach learning of concepts as a classification task; a Noisy-OR classifier has been accordingly adapted to do so.

- Preliminary results have focused on learning a probabilistic terminology from a real-world domain — the Brazilian scientific repository.
Conclusions

- We have presented algorithms that perform learning of both probabilities and logical constructs from relational data for the recently proposed Probabilistic DL \(\mathcal{CRALC} \).

- We approach learning of concepts as a classification task; a Noisy-OR classifier has been accordingly adapted to do so.

- Preliminary results have focused on learning a probabilistic terminology from a real-world domain — the Brazilian scientific repository.
Conclusions

- We have presented algorithms that perform learning of both probabilities and logical constructs from relational data for the recently proposed Probabilistic DL CR\textit{ALC}.
- We approach learning of concepts as a classification task; a Noisy-OR classifier has been accordingly adapted to do so.
- Preliminary results have focused on learning a probabilistic terminology from a real-world domain — the Brazilian scientific repository.
Future Work

- Investigate the scalability of our learning methods.
- Further experiments.
Future Work

- Investigate the scalability of our learning methods.
- Further experiments.
The End

Thank you