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Ontologies

Ontologies are key components of the Semantic Web
Considerable effort is now invested into developing
automated means for the acquisition of ontologies
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Probabilistic Description Logics

It is natural to combine logical and probabilistic approaches
to machine learning for automated ontology acquisition.
Learning ontologies expressed in Probabilistic Description
Logics is a topic that has not received due attention.
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Probabilistic Description Logic CRALC

CRALC is a probabilistic extension of the DL ALC.
The following constructors are available in ALC:
conjunction (C u D), disjunction C t D, negation (¬C),
existential restriction (∃r .C), and value restriction (∀r .C).
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Probabilistic Inclusions and their Semantics

P(A|B) = α

∀x ∈ D : P(A(x)|B(x)) = α
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Example

P(Animal) = 0.1,P(Animal) = 0.6,P(hasChild) = 0.3,
Human ≡ Human u Rational,
Beast ≡ Animal u ¬Rational,
Parent ≡ Human u ∃hasChild.Human,
P(Kangaroo|Beast) = 0.4,P(Kangaroo|¬Beast) = 0.0,
MaternityKangaroo ≡ Kangaroo u ∃hasChild.Kangaroo
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Description Logic Learning

Our approach to learning based on Description Logics
employes methods from Inductive Logic Programming
(ILP)
ILP is a research field at the intersection of machine
learning and logic programming
In concept-learning and ILP the search space is typically
structured by means of the dual notions of generalization
and specialization.
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Probabilistic Description Logic Learning

In a probabilistic setting the covers relation is given by:

Probabilistic Covers Relation
covers(e,H,B) = P(e|H,B).
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Learning in CRALC

Candidate hypotheses can be given by C w H1, . . . ,Hk ,
where H1 = B u ∃D.>,H2 = A t E, . . ..
Assume each candidate hypothesis together with the
example e for the target concept as being a probabilistic
variable or feature in a probabilistic model
The learning task is restricted to finding a probabilistic
classifier
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Learning a Probabilistic Classifier

We use a class of simple Bayesian network models — the
models of independence of causal influence (ICI) —- to
classification.
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A particular ICI model is a Noisy-OR classifier
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The Noisy-OR Classifier

The joint probability distribution of the Noisy-OR model is

PM(·) = PM(C|A′1, . . . ,A′k ) ·

(
k∏

j=1

PM(A′j |Aj) · PM(Aj)

)
.

It follows that

PM(C = 0|A = a) =
∏

j

PM(A′j = 0|Aj = aj), (1)

PM(C = 1|A = a) = 1−
∏

j

PM(A′j = 0|Aj = aj). (2)
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Learning the Noisy-OR Classifier

EM
Learning of a Noisy-OR classifier is based on the EM
algorithm
An efficient implementation resorts to a transformation of
an ICI model using a hidden variable
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The Algorithm
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Experiments

Experiment were performed on a database collected from the
Lattes curriculum platform
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The Lattes Curriculum Platform

The Lattes curriculum platform is the Brazilian government
scientific repository1

It is a public source of relational data about scientific
research, containing data on several thousand researchers
and students.
A restricted database has been constructed based on 220
randomly selected documents.

1http://lattes.cnpq.br.
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The Lattes Curriculum Platform (II)



Introduction Probabilistic Description Logic CRALC DL Learning Probabilistic Description Logic Learning Results Conclusions Future Work

The Learned Concepts

For instance, to properly identify a professor, the following
concept description was learned:

Professor ≡ Person
u(∃hasPublication.Publication t ∃advises.Person t ∃worksAt.Organization)
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Duplicate Publications

A probabilistic concept for duplicate publications was learned:

DuplicatePublication ≡ Publication
u(∃hasSimilarTitle.Publication t ∃hasSameYear.Publication
thasSameType.Publication))
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Some Inferences with the Learned Model

Prior probability is low: P(DuplicatePublication(0)) = 0.05.
Evidence on title similarity increases probability value:

P(DuplicatePublication(0)|∃hasSimilarTitle(0, 1)) = 0.77.

Further evidence on type almost guarantees a duplicate
concept:

P(DuplicatePublication(0)|∃hasSimilarName(1) u ∃hasSameType(1)) = 0.99.
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Conclusions

We have presented algorithms that perform learning of
both probabilities and logical constructs from relational
data for the recently proposed Probabilistic DL CRALC
We approach learning of concepts as a classification task;
a Noisy-OR classifier has been accordingly adapted to do
so.
Preliminary results have focused on learning a probabilistic
terminology from a real-world domain — the Brazilian
scientific repository.
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Future Work

Investigate the scalability of our learning methods.
Further experiments.
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The End

Thank you
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