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Abstract. Description Logics (DLs) are a family of knowledge representation 
languages that have gained considerable attention the last 20 years. It is well-
known that the interpretation domain of classical DLs is a classical set. 
However, in Science and in the ordinary life the situation is not at all like this. 
In order to handle these types of knowledge in DLs, in this paper we present a 
DL framework based on multiset theory. Concretely, we present the DL over 
multisets ALCmsets which is a semantic extension of the classical DL ALC. The 
syntax and semantics of ALCmsets are presented. Moreover, we investigate the 
logical properties of ALCmsets and provide a sound and terminating reasoning 
algorithm for satisfiability problem of ALCmsets. 
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1   Introduction 

In the last 20 years a substantial amount of work has been carried out in the 
context of Description Logics (DLs for short) [1][20]. DLs are a family of logic-based 
knowledge representation formalisms that are tailored towards representing the 
terminological knowledge of an application domain in a structured and formally well-
understood way. DLs have been applied to numerous problems in computer science 
such as information integration, databases, software engineering and soft sets. Recent 
interest in DLs has been spurred by their application in the Semantic Web [2]: the DL 
SHOIN(D) provides the logical underpinning for the Web Ontology Language (OWL), 
and the DL SROIQ(D) is used in OWL 2 [6][11][15][16]. A main point is that DLs are 
considered as to be attractive logics in knowledge based applications as they are a 
good compromise between expressive power and computational complexity. 

From the semantics of DLs [1] we know that the interpretation domain of 
classical DLs is a classical set (Zermelo-Fraenkel set) [12]. That is to say, the 
interpretation of classical DLs is based on classical set theory from a semantics point 
of view. It is well-known that classical set theory states that a given element can 
appear only once in a set, it assumes that all mathematical objects occur without 
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repetition. However, in Science and in the ordinary life the situation is not at all like 
this. In the physical world it is observed that there is an enormous repetition [7]. 

As a matter of fact, in order to process the collections with repetition, multi-set 
theory (MST for short) has been presented and several operations as the addition, the 
union and the intersection of multisets have been defined and their properties 
investigated in several papers [3][27][28]. Intuitively, multisets (sometimes also 
called bags[13][28]) are set-like structures where an element can appear more than 
once [3]. Thus, a multiset differs from a set in that each element has a multiplicity, 
which is a natural number indicating (lossely speaking) how many times it is a 
member of the multiset [7]. We must note that the word multiset was coined by N. G. 
de Bruijin [18], but the first person that actually used multisets was Richard Dedekind 
in his well-known paper “Was sind und was sollen die Zahlen?” (“The nature and 
meaning of numbers”) [4]. This paper was published in 1888 [27]. More concretely, a 
multiset is a collection of objects in which repetition of elements is significant [9]. We 
confront a number of situations in life when we have to deal with collections of 
elements in which duplicates are significant. An example may be cited to prove this 
point. While handling a collection of employees’ ages or details of salary in a 
company, we need to handle entries bearing repetitions and consequently our interest 
may be diverted to the distribution of elements. In such situations the classical 
definition of set proves inadequate for the situation presented [9]. Thus, from a 
practical point of view multisets are very useful structures as they arise in many areas 
of mathematics and computer science [8][9][19][22][23][27]. A complete survey of 
the development of multi-set theory can be found in [3]. 

Naturally, a problem is raised: how we can interpret the concepts and the roles 
of DLs using multi-set theory? Furthermore, what are the benefits of doing so? After 
careful thought, we find that it is feasible to interpret the concepts and the roles of 
DLs using multi-set theory. Moreover, it is a more accurate interpretation for the 
concepts and the roles of DLs. For example, when we interpret the concept 
commended-students (students who are commended), we can say that Zhangsan, Lisi 
and Wangwu are the instances of the concept commended-students. More formally, 
we can say commended-studentsI={Zhangsan, Lisi, Wangwu} in classical DLs. 
However, if we consider more accurate situation, e.g., Zhangsan is commended three 
times, Lisi is commended twice, and Wangwu is commended once, obviously, the 
classical interpretation of DLs cannot process this situation. Here we can interpret the 
concept commended-students using multi-set theory. Formally, commended-
studentsMI={Zhangsan, Zhangsan, Zhangsan, Lisi, Lisi, Wangwu}, where {Zhangsan, 
Zhangsan, Zhangsan, Lisi, Lisi, Wangwu} is a multiset. 

In this paper we extend DLs allow to express that interpretation of a concept 
(resp., a role) is not a subset of classical set (traditional interpretation domain I) 
(resp., a subset of II) like in classical DLs, but a subset of multisets (resp., a subset 
of Cartesian product of multisets). That is, we will extend the interpretation domain of 
DLs to multisets. More concretely, we will present the DL ALCmsets, which is a 
semantic extension of the DL ALC [10][14][17][24][26] based on multiset theoretic 
operations presented in [5][9][13]. Moreover, we will provide a sound and incomplete 
reasoning algorithm for the satisfiability reasoning problem of the DL ALCmsets. It is 
worth noting that classical set is a special case of multisets [9], hence, the DL ALC [10] 
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[14][17][24][26] is a special case of the DL ALCmsets presented in this paper from a 
semantics point of view. 

2   Multisets 

The current section provides some background on multisets. 
A naive concept of multiset was formalized by Blizard [5]. It has the following 

properties: (i) a multiset is a collection of elements in which certain elements may 
occur more than once; (ii) occurrences of a particular element in a multiset are 
indistinguishable; (iii) each occurrence of an element in a multiset contributes to the 
cardinality of the multiset; (iv) the number of occurrences of a particular element in a 
multiset is a (finite) positive integer; (v) the number of distinguishable (distinct) 
elements in a multiset need not be finite; and (vi) a multiset is completely determined 
if we know the elements that belong to it and the number of times each element 
belongs to it [9]. In the following, we introduce the basic definitions and notations of 
multisets [5][9][13]. 

A collection of elements containing duplicates is called a multiset. Formally, if 
X is a set of elements, a multiset M drawn from the set X is represented by a function 
count M or CM: XN where N represents the set of non-negative integers. For each 
xX, CM(x) is the characteristic value of x in M and indicates the number of 
occurrences of the element x in M. A multiset M is a set if xX, CM(x)=0 or 1. 

The word “multiset” often shortened to “mset” abbreviates the term “multiple 
membership set”. 

Let M1 and M2 be two msets drawn from a set X. M1 is a sub mset of M2 (M1M2) 
if xX, CM1(x)CM2(x). M1 is a proper sub mset of M2 (M1M2) if CM1(x)CM2(x) 
xX and there exists at least one xX such that CM1(x)<CM2(x). Two msets M1 and 
M2 are equal (M1=M2) if M1M2 and M2M1. An mset M is empty if xX, CM(x)=0. 
The cardinality of an mset M drawn from a set X is Card M=xXCM(x). It is also 
denoted by |M|. 

The insertion of an element x into an mset M results in a new mset M denoted 
by M=Mx such that CM(x)=CM(x)+1 and CM(y)=CM(y) yx. Addition of two msets 
M1 and M2 drawn from a set X results in a new mset M=M1M2 such that xX, 
CM(x)=CM1(x)+CM2(x). The removal of an element x from an mset M results in a new 
mset M denoted by M=Mx such that CM(x)= max{CM(x)1, 0} and CM(y)=CM(y) 
yx. Subtraction of two msets M1 and M2 drawn from a set X results in a new mset 
M=M1M2 such that xX, CM(x)=max{CM1(x)CM2(x), 0}. The union of two msets 
M1 and M2 drawn from a set X is an mset M denoted by M=M1M2 such that xX, 
CM(x)=max{CM1(x), CM2(x)}. The intersection of two msets M1 and M2 drawn from a 
set X is an mset M denoted by M=M1M2 such that xX, CM(x)=min{CM1(x), 
CM2(x)}. 

Let M be an mset from X with x appearing n times in M. It is denoted by xnM. 
M={k1/x1, k2/x2, …, kn/xn} where M is an mset with x1 appearing k1 times, x2 appearing 
k2 times and so on. [M]x denotes that the element x belongs to the mset M and |[M]x| 
denotes the cardinality of an element x in M. The entry of the form (m/x, n/y)/k 
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denotes that x is repeated m times, y is repeated n times and the pair (x, y) is repeated 
k times. C1(x, y) denotes the count of the first co-ordinate in the ordered pair (x, y) and 
C2(x, y) denotes the count of the second co-ordinate in the ordered pair (x, y). 

The mset space Xn is the set of all msets whose elements are in X such that no 
element in the mset occurs more than n times. The set X is the set of all msets over a 
domain X such that there is no limit to the number of occurrences of an element in an 
mset. If X={x1, x2, …, xk} then Xn= {{n1/x1, n2/x2, …, nn/xn} | for i=1, 2, …, k; ni{0, 1, 
2, …, n}}. 

Let X be a support set and Xn be the mset space defined over X. Then for any 
mset MXn, the complement Mc of M in Xn is an element of Xn such that xX, 
CMc(x)=nCM(x). 

Let M1 and M2 be two msets drawn from a set X, then the Cartesian product of 
M1 and M2 is defined as M1M2={(m/x, n/y)/mn | xmM1, ynM2}. The Cartesian 
product of three or more nonempty msets can be defined by generalizing the 
definition of the Cartesian product of two msets. Thus the Cartesian product 
M1M2…Mn of the nonempty msets M1, M2, …, Mn is the mset of all ordered n-
tuples (m1, m2, …, mn) where mi

riMi, i=1, 2, …, n and (m1, m2, …, mn)p 
M1M2…Mn with p=ri, where ri=CMi(mi), and i=1, 2, …, n. 

A sub mset R of MM is said to be an mset relation on M if every member (m/x, 
n/y) of R has a count C1(x, y).C2(x, y). We denote m/x related to n/y by m/xRn/y. 

The domain and range of the mset relation R on M is defined as follows: Dom 
R={xrM | ysM such that r/xRs/y} where CDomR(x)=sup{C1(x, y) | xrM}, Ran 
R={ysM | xrM such that r/xRs/y} where CRanR(y)=sup{C2(x, y) | ysM}. 

3   The ALCmsets DL 

In the current section we will present the description logic over multisets ALCmsets, 
which is a semantic extension of the ALC [1][24]. Concretely, we first define its 
syntax and semantics. Then, we discuss its logical properties. 

3.1   Syntax and Semantics 

As usual, we consider an alphabet of distinct concept names (C), role names (R) 
and individual names (I). The abstract syntax of ALCmsets-concepts and ALCmsets-roles is 
the same as that of ALC [1][24]; however, their semantics is based on interpretations 
on multisets (msets interpretations for short) (see below). Similarly, ALCmsets keeps the 
same syntax of terminological axioms (concept inclusions and concept equations) as 
that of ALC. Interestingly, ALCmsets extends ALC assertions (concept assertions and role 
assertions) into mset assertions, where individuals containing duplicates can appear. 

In the following, we give the semantics of ALCmsets-concepts and ALCmsets-roles 
formally. 

An mset interpretation is a pair MI = (ュMI, MI), where ュMI is a non-empty mset 
(the interpretation domain), and MI is an interpretation function that assigns each 
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atomic concept (concept name) AC to a set AMIュMI, each atomic role (role name) 
RR (note that in ALCmsets roles are always atomic) to a binary relation RMIュMIュMI, 
and each individual name m/aI to an element aMImュMI. This interpretation function 
is extended to ALCmsets concept descriptions as follows: 

 粗MI=ュMI; 
 醋MI=; 
 (C)MI=ュMICMI; 
 (C磁D)MI=CMIDMI; 
 (C雌D)MI=CMIDMI; 
 (R.C)MI={amュMI| bnュMI, (m/a, n/b)mnRMI  bnCMI}; 
 (R.C)MI={amュMI| bnュMI, (m/a, n/b)mnRMI  bnCMI}. 

Note that in this paper we restrict the interpretation domain to be finite. This is 
not a severe limitation as it is hard to imagine an application involving infinite 
interpretation domains. 

An ALCmsets knowledge base KB is also composed of a TBox and an ABox. A 
TBox T is a finite, possibly empty, set of terminological axioms that could be a 
combination of concept inclusions of the form C疵D and concept equations of the 
form CD, where C and D are concept descriptions. An mset interpretation MI 
satisfies C疵D if CMIDMI, and it satisfies CD if CMI=DMI (i.e., CMIDMI and 
DMICMI). An mset interpretation MI satisfies a TBox T iff MI satisfies every axiom 
in T; in this case, we say that MI is a model of T. 

An ABox A includes of a set of mset assertions that could be a combination of 
concept assertions of the form m/a:C and role assertions of the form (m/a, n/b):R, 
where a and b are individuals, C is a concept, and R is a role. An mset interpretation 
MI satisfies m/a:C if aMImCMI, and it satisfies (m/a, n/b):R if (m/aMI, n/bMI)mnRMI. 
An mset interpretation MI satisfies an ABox A iff MI satisfies every mset assertion in 
A w.r.t. a TBox T; in this case, we say that MI is a model of A w.r.t. T. 

An mset interpretation MI satisfies (or is a model of) a knowledge base KB=T, 
A (denoted MI蹿KB), iff it satisfies both components of KB; in this case, we say that 
MI is a model of KB. The knowledge base KB is consistent if there exists an mset 
interpretation MI that satisfies KB. We say KB is inconsistent otherwise. 

Description logics over multisets should provide their users with reasoning 
capabilities that allow them to derive implicit knowledge from the one explicitly 
represented. In the following we will define the most important reasoning problems of 
the ALCmsets DL. 

Let T be a TBox, A an ABox, C, D concept descriptions, and a an individual 
name. The definitions of the main reasoning problems of the ALCmsets DL are as 
follows: 

 C is subsumed by D w.r.t. T (C疵TD) iff CMIDMI for all models MI of T; 
 C is equivalent to D w.r.t. T (CTD) iff CMI=DMI for all models MI of T; 
 C is satisfiable w.r.t. T iff CMI for some model MI of T; 
 A is consistent w.r.t. T iff it has a model that is also a model of T; 
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 m/a is an instance of C w.r.t. A and T (A蹿Tm/a:C) iff aMImCMI for all 
models MI of T and A. 

One might think that, in order to realize the reasoning component of an ALCmsets 
system, one need to design and implement five algorithms, each solving one of the 
above reasoning problems. Fortunately, this is not the case since there exist some 
polynomial time reductions (see Section 3.2). 

3.2   Logical Properties 

It can be easily shown that ALCmsets is a sound extension of ALC, in the sense that 
the mset interpretations coincide with the traditional interpretations if we restrict the 
interpretation domain ュMI to a classical set. However, since ALCmsets is based on 
multiset theory, some properties which are different from ALC are obtained. Of course, 
some properties are the same as that of ALC. In the following, we will discuss these 
properties. 

The first ones are straightforward: 粗醋, 醋粗, C磁粗C, C雌醋C, 
C磁醋醋, C雌粗粗 and R.醋醋, where C is a concept, R is a role. 

The following properties show that some interesting equivalences hold in 
ALCmsets. 

Proposition 1. Let C, C1, C2, C3 and D be five concepts. Then 

(1) CC, C磁CC, C雌CC; 
(2) (C磁D)C雌D, (C雌D)C磁D; 
(3) C1雌(C2磁C3)(C1雌C2)磁(C1雌C3), C1磁(C2雌C3)(C1磁C2)雌(C1磁C3). 

Note 1. Please note that the following properties are satisfied in ALC, however, 
these properties are not satisfied in ALCmsets: 

(C磁C)醋, (C雌C)粗, R.粗粗, (R.C)R.C, (R.C) 
R.C, (R.C)雌 (R.D)R.(C雌D), and (R.C)磁(R.D)R.(C磁D). 

There are two interesting remarks here. Firstly, in ALC, we can assume concepts 
to be in negation normal form (NNF), i.e., negation signs occur immediately in front 
of concept names only. However, in ALCmsets, we cannot do this translation due to 
(R.C)臭R.C and (R.C) 臭R.C. Secondly, in ALC, an ABox A contains 
a clash iff {A(a), A(a)}A for some individual name a and some concept name A. 
However, in ALCmsets, we cannot use this definition due to (C磁C)臭醋 and 
(C雌C)臭粗. For example, let ュMI={6/a, 8/b} and {3/a:C, 4/b:C}A. Since 
3/a:C and 4/b:C, then we have 3/a:C, 4/b:CA. That is, {3/a:C, 3/a:C, 
4/b:C, 4/b:C}A. 

The properties of the polynomial time reductions for reasoning problems are as 
follows. 

Proposition 2. Let T be a TBox, A an ABox, C, D concept descriptions, and a an 
individual name. Then 
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(1) C疵TD iff C磁DTC; 
(2) CTD iff C疵TD and D疵TC; 
(3) C is satisfiable w.r.t. T iff not C疵T醋; 
(4) C is satisfiable w.r.t. T iff there exist m>0 and individual a such that 

{m/a:C} is consistent w.r.t. T; 
(5) A is consistent w.r.t. T iff A催Tm/a:醋 for any m>0 and individual a. 

Note 2. It needs to be noted that the polynomial time reductions for instance 
problem to (in)consistency (i.e., A蹿Tm/a:C iff A{m/a:C} is inconsistent w.r.t. T) 
and subsumption problem to (un)satisfiability (i.e., C疵TD iff C磁D is unsatisfiable 
w.r.t. T), are satisfied in ALC, however, these reductions are not satisfied in ALCmsets. 

Lastly, we have to point out that in the rest of this paper we only consider 
unfoldable TBoxes. More concretely, a concept definition is of the form AC where 
A is a concept name and C is a concept description. Given a set T of concept 
definitions, we say that the concept name A directly uses the concept name B if T 
contains a concept definition AC such that B occurs in C. Let uses be the transitive 
closure of the relation “directly uses”. We say that T is cyclic if there is a concept 
name A that uses itself, and acyclic otherwise. A TBox T is a finite, possibly empty, 
set of terminological axioms of the form A疵C, called inclusion introductions, and of 
the form AC, called equivalence introductions. A TBox is unfoldable if it contains 
no cycles and contains only unique introductions, i.e., terminological axioms with 
only concept names appearing on the left hand side and, for each concept name A, 
there is at most one axiom in T of which A appears on the left side. 

In classical DLs [1], a knowledge base with an unfoldable TBox can be 
transformed into an equivalent one with an empty TBox by a transformation called 
unfolding or expansion [21][25]: Concept inclusion introductions A疵C are replaced 
by concept equivalence introductions AA磁C, where A is a new concept name, 
which stands for the qualities that distinguish the elements of A from the other 
elements of C. Subsequently, if C is a complex concept expression, which is defined 
in terms of concept names, defined in the TBox, we replace their definitions in C. It 
has been proved that the initial TBox with the expanded one are equivalent. 

In DLs over msets such as ALCmsets presented in this paper, we also can prove 
that a knowledge base with an unfoldable TBox can be transformed into an equivalent 
one with an empty TBox. 

Firstly, we can transform an ALCmsets-TBox T into a regular ALCmsets-TBox T, 
containing equivalence introductions only, such that T is equivalent to T in a sense 
that will be specified below. We obtain T from T by choosing for every concept 
inclusion introduction A疵C in T a new concept name A and by replacing the 
inclusion introduction A疵C with the equivalence introduction AA磁C. The TBox 
T is the normalization of T. 

Now we show that T and T are equivalent. 

Proposition 3. Let T be a TBox and T its normalization. Then 
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(1) Every model of T is a model of T. 
(2) For every model MI of T there is a model MI of T that has the same domain 

as MI and agrees with MI on the concept names and roles in T. 

Thus, in theory, inclusion introductions do not add to the expressivity of TBoxes. 
However, in practice, they are a convenient means to introduce concepts into a TBox 
that cannot be defined completely. In fact, this case is the same as classical DLs [1]. 

Now we show that, if T is an unfoldable TBox, we can always reduce reasoning 
problems w.r.t. T to problems w.r.t. the empty TBox. Instead of saying “w.r.t. ” one 
usually says “without a TBox”, and omits the index T for subsumption, equivalence, 
and instance, i.e., writes , 疵, 蹿 instead of T, 疵T, and 蹿T. As we have seen in 
Proposition 3, T is equivalent to its expansion T. Recall that in the expansion every 
equivalence introduction AD such that D contains only concept names, but no 
concept descriptions. Now, for each concept description C we define the expansion of 
C w.r.t. T as the concept description C that is obtained from C by replacing each 
occurrence of a concept name A in C by the concept description D, where AD is 
the equivalence introduction of A in T, the expansion of T. 

Proposition 4. Let T be an unfoldable TBox, C, D concept descriptions, C 
expansion of C, and D expansion of D. Then 

(1) CTC; 
(2) C is satisfiable w.r.t. T iff C is satisfiable; 
(3) C疵TD iff C疵D; 
(4) CTD iff CD. 

4   Reasoning in ALCmsets 

In this section, we will provide a detailed presentation of the reasoning 
algorithm for the ALCmsets-satisfiability problem and the properties for the termination 
and soundness of the procedure. There is one point we have to point out here. Since 
we restrict the maximal number of occurrences of an element (i.e., an individual) in a 
multiset (i.e., subset of interpretation domain), it is obvious to know that the 
satisfiability reasoning algorithm (see below) is incomplete. 

In the following, we will present a tableau algorithm for testing satisfiability of 
an ALCmsets-concept. Before we can describe the tableau-based satisfiability algorithm 
for ALCmsets more formally, we need to introduce some basic notions firstly. 

A constraint (denoted by ) is an expression of the form m/a:C, or (m/a, 
n/b):R, where a and b are individuals, C is a concept, and R is a role. Our calculus, 
determining whether a finite set S of constraints or not, is based on a set of constraint 
propagation rules transforming a set S of constraints into “simpler” satisfiability 
preserving sets Si until either all Si contain a clash (indicating that from all the Si no 
model of S can be build) or some Si is completed and clash-free, that is, no rule can 
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further be applied to Si and Si contains no clash (indicating that from Si a model of S 
can be build). A set of constraints S contains a clash iff {m/a:C, 0/a:C}S for 
some m>0, individual a, and concept description C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Transformation rules of the satisfiability algorithm 

The tableau-based satisfiability algorithm for ALCmsets works as follows. Let C by 
an ALCmsets-concept. In order to test satisfiability of C, the algorithm starts with a finite 
set of constraints {S1, S2, …, Snmax}, and applies satisfiability preserving 
transformation rules (see Figure 1) (in arbitrary order) to the set of constraints Si 
(1inmax) until no more rules apply, where S1={1/a:C}, S2={2/a:C}, …, Snmax= 
{nmax/a:C}. If the “complete” constraint obtained this way does not contain an 

The -rule 
Condition: Si contains m/a:C, but it does not contain 1/a:C, 2/a:C, …, or 

nmaxm/a:C. 
Action: Si,1=Si{1/a:C}, Si,2=Si{2/a:C}, …, Si,nmaxm=Si{nmaxm/a:C}. 

The 磁-rule 
Condition: Si contains m/a:C1磁C2, but neither {m/a:C1, j/a:C2} nor {m/a:C2, 

j/a:C1}, where mjnmax. 
Action: Si,1=Si{m/a:C1, m/a:C2}, Si,2=Si{m/a:C1, m+1/a:C2}, ..., Si,nmax+1 

=Si{m/a:C1, nmax/a:C2}, Si,1=Si{m/a:C2, m/a:C1}, Si,2=Si 
{m/a:C2, m+1/a: C1}, ..., Si,nmax+1=Si{m/a:C2, nmax/a:C1}. 

The 雌-rule 
Condition: Si contains m/a:C1雌C2, but neither {m/a:C1, j/a:C2} nor {m/a:C2, 

j/a:C1}, where 1jm. 
Action: Si,1=Si{m/a:C1, m/a:C2}, Si,2=Si{m/a:C1, m1/a:C2}, ..., Si,m= 

Si{m/a:C1, 1/a:C2}, Si,1=Si{m/a:C2, m/a:C1}, Si,2=Si{m/a: 
C2, m1/a:C1}, ..., Si,m= Si{m/a:C2, 1/a:C1}. 

The -rule 
Condition: Si contains m/a:R.C, but there are no individuals 1/b, 2/b, …, 

nmax/b such that 1/b:C and (m/a, 1/b):R, 2/b:C and (m/a, 2/b): 
R, …, or nmax/b:C and (m/a, nmax/b):R are in Si. 

Action: Si,1=Si{1/b:C, (m/a, 1/b):R}, Si,2=Si{2/b:C, (m/a, 2/b):R}, …, 
Si,nmax=Si {nmax/b:C, (m/a, nmax/b):R}, where 1/b, 2/b, ..., nmax/b 
are individuals not occurring in Si. 

The -rule 
Condition: Si contains m/a:R.C and (m/a, n/b):R, but it does not contain 

n/b:C. 
Action: Si=Si{n/b:C}. 
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obvious contradiction (called clash), then S is consistent (and thus C is satisfiable), 
and inconsistent (unsatisfiable) otherwise. The transformation rules that handle 
negation, conjunction, disjunction, and exists restrictions are non-deterministic in the 
sense that a given set of constraints is transformed into finitely many new sets of 
constraints such that the original set of constraints is consistent iff one of the new sets 
of constraints is so. For this reason we will consider finite sets of constraints S={S1, 
S2, …, Sk} instead of the original set of constraints {S1, S2, …, Snmax}, where knmax. 
Such a set is consistent iff there is some i, 1ik, such that Si is consistent. A rule of 
Figure 1 is applied to a given finite set of constraints S as follows: it takes an element 
Si of S, and replaces it by one set of constraints Si, by two sets of constraints Si and 
Si, or by finitely many sets of constraints Si,j. 

Termination and soundness of the procedures can be shown. 

Proposition 5 (Termination). Let C be an ALCmsets-concept. There cannot be 
some infinite sequences of rule applications 

    {j/a:C}S1S2…, where 1jnmax. 

Proof. The main reasons for this proposition to hold are the following. 

(1) The original sets of constraints {j/a:C} is finite. Namely, there exist nmax 
original sets of constraints {1/a:C}, {2/a:C}, …, {nmax/a:C}. 

(2) Without loss of generality, we consider the original set of constraints 
{j/a:C}. Let S be a set of constraints contained in Si for some i1. For every 
individual m/bj/a occurring in S, there is a unique sequence R1, …, Rk (k1) of role 
names and a unique sequence of individuals of the form 1/b1, 1/b2, …, 1/bk1, or 1/b1, 
1/b2, …, 2/bk1, …, or 1/b1, 1/b2, …, nmax/bk1, …, or nmax/b1, nmax/b2, …, 
nmax/bk1, such that {(j/a, 1/b1):R1, (1/b1, 1/b2):R2, …, (1/bk1, m/b):Rk}S, {(j/a, 
1/b1):R1, (1/b1, 1/b2):R2, …, (2/bk1, m/b):Rk}S, …, or {(j/a, nmax/b1):R1, 
(nmax/b1, nmax/b2):R2, …, (nmax/bk1, m/b):Rk}S. In this case, we say that m/b 
occurs on the level k in S. 

(3) If m/b:CS for an individual m/b on level k, then the maximal role depth 
of C (i.e., the maximal nesting of constructors involving roles) is bounded by the 
maximal role depth of C minus k. Consequently, the level of any individual in S is 
bounded by the maximal role depth of C. 

(4) If m/b:CS, then C is a subdescription of C. Consequently, the number of 
different concept assertions on m/b is bounded by the size of C. 

(5) The number of different role successors of m/b in S (i.e., individuals l/c such 
that (m/b, l/c):RS for a role name R) is bounded by the number of different 
existential restrictions in C.  

Proposition 6 (Soundness). Assume that S is obtained from the finite set of 
constraints S by application of a transformation rule. If S is consistent, then S is 
consistent. 
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Proof. [Sketch] Given the termination property (see Proposition 5), it is easily 
verified, by case analysis, that the transformation rules of the satisfiability algorithm 
are sound. For example, the -rule: Assume that MI is an mset interpretation 
satisfying m/a:C, where 0<mnmax. Let us show that MI satisfies 1/a:C, 
2/a:C, …, or nmaxm/a:C. Since MI satisfies m/a:C, by the semantics of C 
we have that am(C)MI=ュMICMI. Since the maximal number of occurrences of a in 
ュMI is nmax, thus, by the definition of subtraction of two msets, we know that the 
number of occurrences of a in CMI is 1, 2, …, or nmaxm. That is, a1CMI, a2CMI, …, 
or anmaxmCMI. Therefore, MI satisfies 1/a:C, 2/a:C, …, or nmaxm/a:C.  

5   Conclusion 

We present a DL framework based on multiset theory. Our main feature is that 
we extend classical DLs allow to express that interpretation of a concept (resp., a role) 
is not a subset of classical set (resp., a subset of Cartesian product of sets) like in 
classical DLs, but a subset of multisets (resp., a subset of Cartesian product of 
multisets). To the best of our knowledge, this is the first attempt in this direction. 

Current research effort is to implement the reasoning algorithm and to perform 
an empirical evaluation in real scenarios. An interesting topic of future research is to 
study the complexity and optimization techniques of reasoning in DLs over multisets 
such as ALCmsets. Furthermore, additional research effort can be focused on the 
reasoning algorithms for the (very) expressive DLs over multisets such as SROIQmsets. 
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