Learning Sentences and Assessments in Probabilistic Description Logics

José Ochoa Luna¹ Kate Revoredo² Fabio Cozman¹

Decision Making Lab. Escola Politécnica - Universidade de São Paulo

Departamento de Informática Aplicada Unirio

URSW 2010

J. E. Ochoa Luna (POLI-USP)

Learning PDL

2010 1/24

Outline

Introduction

- 3 Learning Description Logics
 - Learning CRALC
- 5 Preliminary Results
- 6 Conclusions

э

< ロ > < 同 > < 回 > < 回 >

• Representation of uncertainty in the semantic Web can be favoured by the use of learning techniques

3 + 4 = +

- Representation of uncertainty in the semantic Web can be favoured by the use of learning techniques
- Caveats in syntax and semantics in PDL have prevented them from spreading into several domains

- < ⊒ →

- Representation of uncertainty in the semantic Web can be favoured by the use of learning techniques
- Caveats in syntax and semantics in PDL have prevented them from spreading into several domains
- It can be hard to elicit the probability component of a particular set of sentences

- Representation of uncertainty in the semantic Web can be favoured by the use of learning techniques
- Caveats in syntax and semantics in PDL have prevented them from spreading into several domains
- It can be hard to elicit the probability component of a particular set of sentences
- Focus in CRALC language

Previous Efforts

Focus on Concept definitions

Using Noisy-OR classifiers

J. E. Ochoa Luna (POLI-USP)

2010 4/24

э

3 > 4 3

Previous Efforts

Focus on Concept definitions

Using Noisy-OR classifiers

Focus on Probabilistic inclusions $C \equiv A \cup B \rightarrow P(C|A \cup B), P(C|A), P(C|B)$

Combined approach \rightarrow an algorithm for learning concept definitions and probabilistic inclusions at once

Combined approach \rightarrow an algorithm for learning concept definitions and probabilistic inclusions at once

Mostly based on inductive logic programming techniques with a probabilistic twist

Combined approach \rightarrow an algorithm for learning concept definitions and probabilistic inclusions at once

Mostly based on inductive logic programming techniques with a probabilistic twist

• A search for the best concept description is performed.

Combined approach \rightarrow an algorithm for learning concept definitions and probabilistic inclusions at once

Mostly based on inductive logic programming techniques with a probabilistic twist

- A search for the best concept description is performed.
- A decision is made as to whether to consider the concept definition found or to insert a probabilistic inclusion based on this concept

Probabilistic Description Logic CR \mathcal{ALC}

Probabilistic Description Logic CRALC

• CRALC is a probabilistic extension of the DL ALC.

3 + 4 = +

Probabilistic Description Logic CRALC

- CRALC is a probabilistic extension of the DL ALC.
- The following constructors are available in *ALC*: conjunction (C □ D), disjunction C □ D, negation (¬C), existential restriction (∃r.C), and value restriction (∀r.C).

Probabilistic Description Logic ${\tt CRALC}$

Probabilistic Inclusions and their Semantics

J. E. Ochoa Luna (POLI-USP)

2010 7/24

э

≣ ⊁ ⊀ ≣ ⊁

Probabilistic Description Logic CRALC

Probabilistic Inclusions and their Semantics

•
$$P(A|B) = \alpha$$

• $\forall x \in \mathcal{D} : P(A(x)|B(x)) = \alpha$

J. E. Ochoa Luna (POLI-USP)

2010 7/24

3 × 4 3

Probabilistic Description Logic CR \mathcal{ALC}

Probabilistic Inclusions and their Semantics

- $P(A|B) = \alpha$
- $\forall x \in \mathcal{D} : P(A(x)|B(x)) = \alpha$
- P(Professor(Maria)|Researcher(Maria)) = 0.4

Example

P(Animal) = 0.9,P(Rational) = 0.6,P(hasChild) = 0.3,Human \equiv Animal \sqcap Rational, Beast \equiv Animal $\sqcap \neg$ Rational. Parent ≡ Human $\sqcap \exists$ hasChild.Human. P(Kangaroo|Beast) = 0.4, $P(\text{Kangaroo}|\neg\text{Beast}) = 0.0,$ MaternityKangaroo \equiv Kangaroo $\Box \exists$ hasChild.Kangaroo

-

< 47 ▶

Example

- P(Animal) = 0.9, P(Rational) = 0.6, P(hasChild) = 0.3,Human \equiv Animal \sqcap Rational, Beast \equiv Animal $\sqcap \neg$ Rational, Parent \equiv
- Human □ ∃hasChild.Human.
- P(Kangaroo|Beast) = 0.4,
- $P(Kangaroo|\neg Beast) = 0.0,$
- $MaternityKangaroo\equiv$
- Kangaroo $\sqcap \exists$ hasChild.Kangaroo

3 + 4 = +

Example

P(Animal) = 0.9, P(Rational) = 0.6, P(hasChild) = 0.3, $Human \equiv Animal \sqcap Rational,$ $Beast \equiv Animal \sqcap \neg Rational,$ $Parent \equiv$ $Human \sqcap \exists hasChild.Human,$ $P(Kangaroo| \exists Beast) = 0.4,$ $P(Kangaroo| \neg Beast) = 0.0,$

MaternityKangaroo \equiv

Kangaroo ⊓ ∃hasChild.Kangaroo

Inference

$$P(Parent(0)|Human(0)) = 0.232$$

3 + 4 = +

Goal

Find a correct concept with respect to given examples. A sound concept definition for Target must cover all positive examples and none of the negative examples

Goal

Find a correct concept with respect to given examples. A sound concept definition for Target must cover all positive examples and none of the negative examples

YINYANG

Goal

Find a correct concept with respect to given examples. A sound concept definition for Target must cover all positive examples and none of the negative examples

- YINYANG
- DL-FOIL

Goal

Find a correct concept with respect to given examples. A sound concept definition for Target must cover all positive examples and none of the negative examples

- YINYANG
- DL-FOIL
- DL-Learner

Learning Steps

Refinement Operators

Generalization and specialization $\rightarrow \theta$ -subsumption

Learning Steps

Refinement Operators

Generalization and specialization $\rightarrow \theta$ -subsumption

Score Function $\mathcal{K} \cup \mathcal{C} \models \mathbf{e}$ (instance checking)

Learning Steps

Refinement Operators

Generalization and specialization $\rightarrow \theta$ -subsumption

Score Function $\mathcal{K} \cup \mathcal{C} \models \mathbf{e}$ (instance checking)

Search Algorithm

FOIL-based, genetic algorithms, horizontal expansion

Assumption

Deterministic

 $Father \equiv Male \sqcap hasChild. \top$

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

★ E ► < E</p>

Assumption

Deterministic Father \equiv Male \sqcap hasChild. \top

Probabilistic $P(FlyingBird|Bird) = \alpha$

Assumption

Deterministic

Father \equiv Male \sqcap hasChild. \top

Probabilistic $P(FlyingBird|Bird) = \alpha$

Assumption

Negative and positive examples underlie the choice of either a concept definition or a probabilistic inclusion

Proposal

 We expect to find concepts covering all positive examples which is not always possible → uncertainty

ъ

Proposal

- We expect to find concepts covering all positive examples which is not always possible → uncertainty
- When we are unable to find a concept definition that covers all positive examples we assume such hypothesis as candidates to be a probabilistic inclusion

Refinement Operators

Previous refinement operators

★ E ► < E</p>

Refinement Operators

Previous refinement operators

Probabilistic score function

$$\mathit{cover}(e,\mathcal{K},\mathit{C})=\mathit{P}(e|\mathcal{K},\mathit{C}).$$

J. E. Ochoa Luna (POLI-USP)

▶ Ξ シへの 2010 13/24

∃ >

Refinement Operators

Previous refinement operators

Probabilistic score function

$$cover(e, \mathcal{K}, C) = P(e|\mathcal{K}, C).$$

Search

• We start by searching a deterministic concept

Refinement Operators

Previous refinement operators

Probabilistic score function

$$cover(e, \mathcal{K}, C) = P(e|\mathcal{K}, C).$$

Search

- We start by searching a deterministic concept
- If after a set of iterations the score of the best candidate is below a given threshold, a search for a probabilistic inclusion is started

The Algorithm

Require: an initial knowledge base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ and a training set E.

1: Search Tree with a node $\{C=\top, h=0\}$

2: repeat

- 3: choose node $N = \{C, h\}$ with highest probabilistic score in SearchTree
- 4: expand node to length h + 1:
- 5: add all nodes $D \in (\text{refinementOperator}(C))$ with lenght =h+1
- 6: learn parameters for all nodes D
- 7: $N = \{C, h+1\}$
- 8: expand alternative nodes according to horizontal expansion factor and h + 1[18]
- 9: until stopping criterion
- 10: N' = best node in SearchTree
- 11: if score(N') > threshold then
- 12: return deterministic concept $C' \in N'$

13: else

- 14: call ProbabilisticInclusion(SearchTree)
- 15: end if

Algorithm 1: Algorithm for learning probabilistic terminologies.

Probabilistic Inclusion Algorithm

Require: SearchTree previously computed

- 1: for each pair of candidates C_i, C_j in first k nodes of the SearchTree do
- 2: compute the conditional mutual information $I(C_i, C_j|T)$
- 3: end for
- 4: build an undirected graph in which vertices are the k candidates
- 5: annotate the weight of an edge connecting C_i to C_j by the $I(C_i, C_j|T)$
- 6: build a maximum weight spanning tree from this graph
- 7: add T as parent for each C_i
- 8: learn probabilities for $P(C_i | Parents(C_i))$
- 9: return the highest probabilistic inclusion $P(T|C') = \alpha$

Algorithm 2: Algorithm for learning probabilistic inclusions.

Description Logic Learning Results

Table: Description logic learning results

Problem	axioms, examples	DL-learner	Combined approach
		correct (length)	correct(length)
trains	252,10	100%(5)	100%(5)
arches	47,5	100%(9)	100%(10)
moral	31,43	100%(3)	100%(5)
poker(pair)	35,49	100%(8)	100%(8)
poker (straight)	45,55	100%(5)	100%(5)

J. E. Ochoa Luna (POLI-USP)

▶ Ξ つへC 2010 16/24

3 > 4 3

A Real World Domain

Wikipedia

Wikipedia articles consist mostly of free text, but also contain various types of structured information in the form of Wiki markup

A Real World Domain

Wikipedia

Wikipedia articles consist mostly of free text, but also contain various types of structured information in the form of Wiki markup

Several Projects

DBPedia and YAGO

Preliminary Results

YAGO

 YAGO knows more than 2 million entities (like persons, organizations, cities, etc.)

ъ

YAGO

- YAGO knows more than 2 million entities (like persons, organizations, cities, etc.)
- It knows 20 million facts about these entities: actedIn

YAGO

- YAGO knows more than 2 million entities (like persons, organizations, cities, etc.)
- It knows 20 million facts about these entities: actedIn
- Scientists and film directors domains

THE 1 AT 1

Scientists Dataset

2008 potential scientists have been considered

	P(wrotes) = 0.4
	P(hasAcademicAdvisor) = 0.80
	P(interestedIn) = 0.6
	P(diedOnYear) = 0.7
	P(hasWonPrize) = 0.4
	P(worksAt) = 0.85
	P(influences) = 0.6
Scientist \equiv	Person
	□(∃hasAcademicAdvisor.Person
	□ ∃wrotes.Text □ ∃worksAt.EducationalInstitution)
P(InfluentialScientist	Scientist ⊓ ∃influences.
	∃diedOnYear.Year) = 0.85
P(Musician	Person □ ∃hasAcademicAdvisor.∃wrote.Text) = 0.1
HonoredScientist \equiv	Scientist
	□ ∃hasWonPrize.Prize

3 > 4 3

Scientists II

$\begin{array}{ll} P(Scientist(0) & |Person(0) \\ & & \sqcap(\exists wrote.Text(1) \\ & & \sqcap \exists hasAcademicAdvisor.Person(2)) = 0.5 \end{array}$

J. E. Ochoa Luna (POLI-USP)

2010 20 / 24

Scientists II

$\begin{array}{ll} P(\text{Scientist}(0) & |\text{Person}(0) \\ & & & & \\ \sqcap(\exists wrote.\text{Text}(1) \\ & & & \\ \sqcap \exists hasAcademicAdvisor.\text{Person}(2)) = 0.5 \end{array}$

$\begin{array}{ll} P(Scientist(0) & |Person(0) \\ & \sqcap(\exists wrote.Text(1) \sqcap \exists hasAcademicAdvisor. \\ & \exists influences.Person(3))) = 0.65 \end{array}$

J. E. Ochoa Luna (POLI-USP)

2010 20/24

Directors

5589 potential directors have been considered

 $Actor \equiv P(Director)$

 $P(\text{FomerActor} \ \text{HonoredDirector} \equiv \ \text{FamilyDirector} \equiv P(\text{InfluentialDirector})$

P(MostInfluentialDirector

P(isMarriedTo) = 0.1P(influences) = 0.35P(hasWonPrize) = 0.28P(hasChild) = 0.05P(diedOnYear) = 0.5P(directed) = 0.8P(actedIn) = 0.4Person
VactedIn Film Person \sqcap (\exists directed.Film \sqcap \exists influences. $\exists actedIn.Film) = 0.75$ Director $\sqcap \exists actedIn.Film) = 0.6$ Director □ ∃hasWonPrize.Prize Director \sqcap (\exists isMarriedTo.Director $\sqcup \exists$ hasChild.Director) Director $\square \exists$ hasWonPrize.Prize $\square \exists$ influences. $\exists isMarriedTo.Director) = 0.7$ Director □ ∃diedOnYear Year □ ∃influences. \exists hasWonPrize.Prize) = 0.8

• • • • • • • • • • • •

Directors II

$P(\text{Actor}(0)|\text{Person}(0) \sqcap \exists actedIn.Film(1) \sqcap \exists directed.Film(2)) = 0.4$

$P(\text{Director}(0)|\text{Person}(0) \sqcap \exists \text{actedIn}.\text{Film}(1) \sqcap \exists \text{directed}.\text{Film}(2)) = 0.55$

Directors II

$P(\text{Actor}(0)|\text{Person}(0) \sqcap \exists actedIn.Film(1) \sqcap \exists directed.Film(2)) = 0.4$

$P(\text{Director}(0)|\text{Person}(0) \sqcap \exists \text{actedIn}.\text{Film}(1) \sqcap \exists \text{directed}.\text{Film}(2)) = 0.55$

$$\begin{array}{ll} P(Actor(0) & |Person(0) \\ & & \sqcap(\exists actedIn.Film(1) \sqcap \exists directed.Film(2) \\ & & \sqcap \exists influences.Person(3))) = 0.3 \end{array}$$

J. E. Ochoa Luna (POLI-USP)

Learning PDL

2010 22/24

• We have produced a combined scheme, where both the deterministic and probabilistic components receive due attention.

- We have produced a combined scheme, where both the deterministic and probabilistic components receive due attention.
- Initially, the search aims at finding deterministic concepts. If the score obtained is below a given threshold, a probabilistic inclusion search is conducted

- We have produced a combined scheme, where both the deterministic and probabilistic components receive due attention.
- Initially, the search aims at finding deterministic concepts. If the score obtained is below a given threshold, a probabilistic inclusion search is conducted
- Preliminary results have focused a real-world domain —YAGO ontology based on Wikipedia

The End

Thank you

J. E. Ochoa Luna (POLI-USP)

Learning PDL

イロト イヨト イヨト イヨト