Tractability of the Crisp Representations of Tractable Fuzzy Description Logics

Fernando Bobillo

fbobillo@unizar.es

Department of Computer Science and Systems Engineering University of Zaragoza, Spain

Joint research with M. Delgado (DECSAI, University of Granada, Spain)

URSW 2010

Shanghai (China) November 2010

F. Bobillo (DIIS, Unizar)

Representations of Tractable Fuzzy DLs

Introduction

- Classical ontology languages are not appropriate to deal with vagueness or imprecision in the knowledge.
 - Solution: Fuzzy Description Logics (DLs).
- An important line of research is the computation of an equivalent crisp representation of a fuzzy ontology.
- This way, it is possible to reason with the obtained crisp ontology, making it possible to reuse classical ontology languages, DL reasoners, and other resources.
- It is possible to reason with very expressive fuzzy DLs, and with different fuzzy logics:
 - Zadeh
 - Gödel
 - Łukasiewicz

Tractable DLs

- Expressive power compromised for the efficiency of reasoning.
- The standard language OWL 2 has 3 fragments (profiles):
 - OWL 2 EL
 - OWL 2 QL
 - OWL 2 RL

• Complexity:

- OWL 2 EL, OWL 2 RL: polynomial time w.r.t. the ontology size.
- OWL 2 QL: LOGSPACE w.r.t. the size of the ABox.

4 3 5 4 3 5

• Relation of some OWL 2 constructors and its profiles:

OWL 2	OWL 2 EL	OWL 2 QL	OWL 2 RL
Class	\checkmark	\checkmark	\checkmark
ObjectIntersectionOf	\checkmark	restricted	\checkmark
ObjectUnionOf			restricted
ObjectComplementOf		restricted	restricted
ObjectAllValuesFrom			restricted
ObjectSomeValuesFrom	\checkmark	restricted	restricted
DataAllValuesFrom			restricted
DataSomeValuesFrom	\checkmark	\checkmark	restricted
ObjectProperty	\checkmark	\checkmark	\checkmark
DatatypeProperty	√	\checkmark	\checkmark
ClassAssertion	\checkmark	\checkmark	\checkmark
ObjectPropertyAssertion	\checkmark	\checkmark	\checkmark
SubClassOf	√	\checkmark	\checkmark
SubObjectPropertyOf	\checkmark	\checkmark	\checkmark
SubDataPropertyOf	\checkmark	\checkmark	\checkmark

Universidad Zaragoza

Definition

A fuzzy DL language \mathcal{X} is closed under reduction iff the crisp representation of a fuzzy ontology in \mathcal{X} is in the (crisp) DL language \mathcal{X} .

- Sometimes, fuzzy DL languages are closed under reduction.
- The objective of this paper is to determine in a precise way when this property holds, focusing on tractable fuzzy DLs.

F. Bobillo (DIIS, Unizar)

< ロ > < 同 > < 回 > < 回 >

The case of Zadeh fuzzy logic

- Zadeh logic makes it possible to obtain smaller crisp representations than with Gödel and Łukasiewicz logics.
- Example:
 - From $\langle a : C \sqcap D \ge 0.6 \rangle$ we can deduce both $\langle a : C \ge 0.6 \rangle$ and $\langle a : D \ge 0.6 \rangle$.
- In Łukasiewicz logic, this is not possible, and we have to build a disjunction over all the possibilities.
 - From $\langle a: C \sqcap D \ge 0.6 \rangle$, deduce $\langle a: C \ge 1 \rangle$ and $\langle a: D \ge 0.6 \rangle$, or $\langle a: C \ge 0.9 \rangle$ and $\langle a: D \ge 0.7 \rangle$, or $\langle a: C \ge 0.8 \rangle$ and $\langle a: D \ge 0.8 \rangle$, or $\langle a: C \ge 0.7 \rangle$ and $\langle a: D \ge 0.9 \rangle$, or $\langle a: C \ge 0.6 \rangle$ and $\langle a: D \ge 1 \rangle$.
- In Gödel implication, we have a similar problem.

4 B K 4 B K

Property

In Zadeh fuzzy logic, a fuzzy DL language \mathcal{X} is closed under reduction iff it includes GCIs and role hierarchies.

• This result applies to OWL 2 EL, OWL 2 QL, and OWL 2 RL.

Example

- Let us assume the language ALC.
- Since ALC does not contain role hierarchies, the property fails.
- Hence, fuzzy \mathcal{ALC} is not closed under reduction.
- This is intuitive, because the crisp representations contains role hierarchies (R_{≥α} ⊑ R_{≥β}), which are not part of ALC.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Property

In Gödel fuzzy logic, a fuzzy DL language \mathcal{X} is closed under reduction iff it verifies each of the following conditions:

- X includes GCIs.
- \mathcal{X} includes role hierarchies.
- If \mathcal{X} includes universal restrictions, then it also include conjunction.
- This result applies to OWL 2 EL, OWL 2 QL, and OWL 2 RL.

The case of Łukasiewicz fuzzy logic

Property

In Łukasiewicz fuzzy logic, a fuzzy DL language \mathcal{X} is **not** closed under reduction if it verifies some of the following conditions:

- X does not include GCIs.
- X does not include role hierarchies.
- X includes one and only one of disjunction and conjunction.
- X includes existential restrictions, but not disjunction.
- X includes universal restrictions, but not conjunction.
- This result applies to OWL 2 EL, OWL 2 QL, and OWL 2 RL.
 - OWL 2 EL / OWL 2 QL support conjunction but not disjunction.
 - OWL 2 RL allows intersection as a superclass expression, but it does not allow disjunction there.
- We only have a partial result.
 - We only know a crisp representation for $L_n ALCHOI$.

Size of the crisp representations

• Zadeh and Gödel OWL 2 QL:

- Crisp representations are in crisp OWL 2 QL.
- A crisp ontology with an ABox with the same size of the fuzzy one.
 - The complexity of reasoning depends on the number of assertions.
- TBox and RBox are larger than the original fuzzy ones.
- Zadeh and Gödel OWL 2 EL / OWL 2 RL:
 - Crisp representations are in crisp OWL 2 EL / RL.
 - TBox and RBox are larger than the original fuzzy ones.
 - Reasoning depends on the size of the ontology.
- Gödel OWL 2 RL makes concept expressions larger than Zadeh, because of universal restrictions.
 - Gödel OWL 2 EL / QL do not, since there are not universal restrictions.

 It is specially important to use optimized crisp representations (e.g., do not consider domain/range axioms as GCIs).

Comments?

Thank you very much for your attention

F. Bobillo (DIIS, Unizar)

Representations of Tractable Fuzzy DLs