Tractability of the Crisp Representations of Tractable Fuzzy Description Logics

Fernando Bobillo
fbobillo@unizar.es

Department of Computer Science and Systems Engineering
University of Zaragoza, Spain

Joint research with M. Delgado (DECSAI, University of Granada, Spain)

URSW 2010
Shanghai (China)
November 2010
Introduction

- Classical ontology languages are not appropriate to deal with vagueness or imprecision in the knowledge.
 - Solution: **Fuzzy Description Logics** (DLs).

- An important line of research is the computation of an **equivalent crisp representation** of a fuzzy ontology.

- This way, it is possible to reason with the obtained crisp ontology, making it possible to reuse classical ontology languages, DL reasoners, and other resources.

- It is possible to reason with very expressive fuzzy DLs, and with **different fuzzy logics**:
 - Zadeh
 - Gödel
 - Łukasiewicz

- **Our goal** is to study some property (tractability) of the crisp representations of fuzzy ontologies.
Tractable DLs

Expressive power compromised for the efficiency of reasoning.

The standard language OWL 2 has 3 fragments (profiles):

- OWL 2 EL
- OWL 2 QL
- OWL 2 RL

Complexity:

- OWL 2 EL, OWL 2 RL: polynomial time w.r.t. the ontology size.
- OWL 2 QL: LOGSPACE w.r.t. the size of the ABox.
Relation of some OWL 2 constructors and its profiles:

<table>
<thead>
<tr>
<th>OWL 2</th>
<th>OWL 2 EL</th>
<th>OWL 2 QL</th>
<th>OWL 2 RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ObjectIntersectionOf</td>
<td>✓</td>
<td>restricted</td>
<td>✓</td>
</tr>
<tr>
<td>ObjectUnionOf</td>
<td></td>
<td></td>
<td>restricted</td>
</tr>
<tr>
<td>ObjectComplementOf</td>
<td></td>
<td>restricted</td>
<td>restricted</td>
</tr>
<tr>
<td>ObjectAllValuesFrom</td>
<td></td>
<td>restricted</td>
<td>restricted</td>
</tr>
<tr>
<td>ObjectSomeValuesFrom</td>
<td>✓</td>
<td>restricted</td>
<td>restricted</td>
</tr>
<tr>
<td>DataAllValuesFrom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DataSomeValuesFrom</td>
<td>✓</td>
<td>✓</td>
<td>restricted</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ObjectProperty</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DatatypeProperty</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ClassAssertion</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ObjectPropertyAssertion</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SubClassOf</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SubObjectPropertyOf</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SubDataPropertyOf</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Motivation

Definition

A fuzzy DL language \mathcal{X} is **closed under reduction** iff the crisp representation of a fuzzy ontology in \mathcal{X} is in the (crisp) DL language \mathcal{X}.

- Sometimes, fuzzy DL languages are closed under reduction.
- The objective of this paper is to determine in a precise way **when this property holds**, focusing on **tractable fuzzy DLs**.
The case of Zadeh fuzzy logic

- Zadeh logic makes it possible to obtain **smaller crisp representations** than with Gödel and Łukasiewicz logics.

Example:
- From \(\langle a : C \sqcap D \geq 0.6 \rangle \) we can deduce both \(\langle a : C \geq 0.6 \rangle \) and \(\langle a : D \geq 0.6 \rangle \).

In Łukasiewicz logic, this is not possible, and we have to build a disjunction over all the possibilities.
- From \(\langle a : C \sqcap D \geq 0.6 \rangle \), deduce \(\langle a : C \geq 1 \rangle \) and \(\langle a : D \geq 0.6 \rangle \),
 - or \(\langle a : C \geq 0.9 \rangle \) and \(\langle a : D \geq 0.7 \rangle \),
 - or \(\langle a : C \geq 0.8 \rangle \) and \(\langle a : D \geq 0.8 \rangle \),
 - or \(\langle a : C \geq 0.7 \rangle \) and \(\langle a : D \geq 0.9 \rangle \),
 - or \(\langle a : C \geq 0.6 \rangle \) and \(\langle a : D \geq 1 \rangle \).

In Gödel implication, we have a similar problem.
The case of Zadeh fuzzy logic

Property

In Zadeh fuzzy logic, a fuzzy DL language \mathcal{X} is closed under reduction iff it includes GCIs and role hierarchies.

- This result applies to OWL 2 EL, OWL 2 QL, and OWL 2 RL.

Example

- Let us assume the language \mathcal{ALC}.
- Since \mathcal{ALC} does not contain role hierarchies, the property fails.
- Hence, fuzzy \mathcal{ALC} is not closed under reduction.
- This is intuitive, because the crisp representations contains role hierarchies ($R_{\geq\alpha} \sqsubseteq R_{\geq\beta}$), which are not part of \mathcal{ALC}.
The case of Gödel fuzzy logic

Property

In Gödel fuzzy logic, a fuzzy DL language \mathcal{X} is closed under reduction iff it verifies each of the following conditions:

- \mathcal{X} includes GCIs.
- \mathcal{X} includes role hierarchies.
- If \mathcal{X} includes universal restrictions, then it also include conjunction.

This result applies to OWL 2 EL, OWL 2 QL, and OWL 2 RL.
In Łukasiewicz fuzzy logic, a fuzzy DL language \mathcal{X} is not closed under reduction if it verifies some of the following conditions:

- \mathcal{X} does not include GCIs.
- \mathcal{X} does not include role hierarchies.
- \mathcal{X} includes one and only one of disjunction and conjunction.
- \mathcal{X} includes existential restrictions, but not disjunction.
- \mathcal{X} includes universal restrictions, but not conjunction.

This result applies to OWL 2 EL, OWL 2 QL, and OWL 2 RL.

- OWL 2 EL / OWL 2 QL support conjunction but not disjunction.
- OWL 2 RL allows intersection as a superclass expression, but it does not allow disjunction there.

We only have a partial result.

- We only know a crisp representation for L_n ALCHOI.
Size of the crisp representations

- **Zadeh and Gödel OWL 2 QL:**
 - Crisp representations are in crisp OWL 2 QL.
 - A crisp ontology with an **ABox with the same size** of the fuzzy one.
 - The complexity of reasoning depends on the number of assertions.
 - TBox and RBox are larger than the original fuzzy ones.

- **Zadeh and Gödel OWL 2 EL / OWL 2 RL:**
 - Crisp representations are in crisp OWL 2 EL / RL.
 - **TBox and RBox are larger** than the original fuzzy ones.
 - Reasoning depends on the size of the ontology.

- **Gödel OWL 2 RL makes concept expressions larger** than Zadeh, because of universal restrictions.
 - Gödel OWL 2 EL / QL do not, since there are not universal restrictions.

- It is specially important to use **optimized crisp representations** (e.g., do not consider domain/range axioms as GCIs).
Comments?

Thank you very much for your attention