Semantic Link Prediction through Probabilistic Description Logics

Kate Revoredo
Department of Applied Informatics

José Eduardo Ochoa Luna and Fabio Cozman
Escola Politécnica
Outline

- **Introduction**
- Background knowledge
- Proposal: Link Prediction using CrALC
- Preliminary Results
- Conclusion and perspective
Introduction

A network can describe social, biological, information systems

- In a network
 - Nodes represent objects, individuals
 - Links denote relations or interactions between the nodes
Introduction

Automatic prediction of possible links in a network is an interesting issue.

- Predator - prey
- Internet structure
- Potential variation in the environment
- Potential link between pages
- Paris subway
- Potential new line
- Research collaboration
- Potential common research interest
Introduction

- **Link prediction** aims at predicting whether two nodes should be connected given that previous informations about their relationships or interests are known.

- **Possibilities**
 - Network structure analysis
 - Numerical informations about the nodes are analyzed
 - Object knowledge analysis
 - Semantic related to the domain of the objects are considered
 - A combination of them
Introduction

- Knowledge about the domain can be formalized using **ontology**.
 - Description logic (DL) can be the language used by the ontology
Introduction

• DL for the Academic domain....

Researcher \equiv \text{Person} \sqcap \exists \text{hasPublication.Publication}
Student \equiv \text{Person} \sqcap \exists \text{hasAdvise.Researcher}
Collaborator \equiv \text{Researcher} \sqcap \exists \exists \text{sharePublication.Researcher}
Researcher \subseteq \text{Professor}

• And if there is uncertainty about the domain?
 – Not all researcher is a professor
Introduction

• Uncertainty about the domain can be formalize using **probabilistic ontology**.
 – Probabilistic Description logic (PDL) can be the language used by the probabilistic ontology
 • P-Classic [KOLLER et.al.,97]
 • P-SHOIN [Lukasiewicz,07]
 • PR-OWL [Costa et.al.,06]
 • CrALC logic [Polastro et.al.,08]
Proposal

• How to predict a new link in a network considering knowledge about the domain and the uncertainty involved?
 – Using an algorithm for link prediction that considers semantic and uncertainty about the domain through the use of the PDL CrALC.
Outline

• Introduction
• **Background knowledge**
 – Probabilistic Description Logic CrALC
• Proposal: Link Prediction using CrALC
• Preliminary Results
• Conclusion and perspectives
Probabilistic description logic CrALC

- CrALC
 - Is a probabilistic extension of the DL ALC
 - Keep all constructors
 - Add probabilistic inclusions such as
 - \(P(\text{Researcher} \mid \text{Person}) = \alpha \)
 - Semantic: \(\forall x \in D \mid P(\text{Researcher}(x) \mid \text{Person}(x)) = \alpha \)
 - Adopts an interpretation-based semantics
Learning crALC

- A PDL crALC can be learned automatically from data [Revoredo, et.al., 2010].
Inference in CrALC

- CrALC assumes an acyclic terminology (T), thus T can be represented through a directed acyclic graph g(T)
 - Each concept name and role name is a node in g(T)
 - If a concept C directly uses concept D, then D is a parent of C in g(T)
 - Each existential restriction (∃r.C) and value restriction (∀r.C) is added to the graph g(T) as nodes
 - An edge from role r to each restriction directly using it is added
 - Each restriction node is a deterministic node
 - Relational Bayesian Network (RNB) [Jeager,02]

- Probabilistic inference is computed in the propositionalization of the graph.
 - Exact and approximate algorithms
Inference in CrALC - Example

$B \sqsubseteq A$

$C \sqsubseteq B \sqcup \exists r. D$

$P(A) = 0.9,$

$P(B | A) = 0.4$

$P(C | B \sqcup \exists r. D) = 0.6$

$P(D | \forall r. A) = 0.3$

- $P(D(a) | B(b)) = 0.232$
Outline

• Introduction
• Background knowledge
• **Proposal: Link Prediction using CrALC**
• Preliminary Results
• Conclusion and perspective
Example

- In a collaboration network
 - Objects: researchers
 - Relationship: “share a publication”

- PDL crALC describing the domain
 - Concepts:
 - Researcher
 - P(Publication)=0.3
 - P(NearCollaborator | Researcher ∩ ∃sharePublication. ∃hasSameInstitution. ∃sharePublication.Researcher) = 0.95
 - StrongRelatedResearcher ≡ Researcher ∩ (∃sharePublication.Researcher ∩ ∃wasAdvised.Researcher)
 - Roles
 - hasPublication
 - P(sharePublication)=0.22
 - P(hasSameInstitution)=0.14
Link Prediction using CrALC - Task

• Given
 – A network \(N \) defining relationships between objects;
 – An ontology \(O \), represented by crALC, describing the domain;
 – The ontology role \(r \) that defines the semantic of the relationship between objects in the network;
 – The ontology concept \(C \) that describes the network objects.

• Find
 – A revised network \(N_f \) with new relationships between objects.
Proposal - Example

- Since the links correspond to a role in the PDL crALC, a new link is added if the probability of the role for the respectively objects given some evidence is high
 - \(P(\text{sharePublication}(\text{ann}, \text{mark}) | \text{evidence}) = 0.87 \)
Algorithm

- **Require**: network N, ontology O, role $r(__,__)$, concept C, threshold
- **Ensure**: network N_f
 - Define N_f as N
 - For all pair of instances (a,b) of concept C do
 - If does not exist a link between nodes a and b in the network N
 - Infer probability $P(r(a,b)|evidences)$ using the RBN created through the ontology O
 - If $P(r(a,b)|evidences) >$ threshold then
 » Add a link between a and b in the network N_f
 - Alternatively to the threshold, the top-k inferred links, where k would be a parameter, can be included.
Outline

• Introduction
• Background knowledge
• Proposal: Link Prediction using CrALC
• **Preliminary Results**
• Conclusion and perspective
Preliminary Results

• Collaboration network of researchers
• Data gathered from Lattes Curriculum Platform
 – Public repository of Brazilian researcher curriculum
 – Informations: name, address, education, professional experience, areas of expertise, publication
 – 1200 researches randomly selected and structured as

```
Researcher(r1), Researcher(r2), Researcher(r4), ...
wasAdvised(r8, r179), wasAdvised(r30, r83), wasAdvised(r33, r1), ...
sharePublication(r1, r32), sharePublication(r4, r12), sharePublication(r5, r115), ...
sameExaminationBoard(r1, r32), sameExaminationBoard(r4, r12), ...
hasSameInstitution(r1, r27), hasSameInstitution(r1, r28), ...
advises(r1, r33), advises(r1, r171), advises(r1, r81), ...
```
Preliminary Results

- Using the data, a PDL crALC was learned [Revoredo et al., 2010]

\[
\begin{align*}
P(\text{Researcher}) &= 1.0 \\
P(\text{hasSameInstitution}) &= 0.83 \\
P(\text{sameExaminationBoard}) &= 0.41 \\
P(\text{NearCollaborator}) &= P(\text{wasAdvised}) = 0.29 \\
P(\text{sharePublication}) &= 0.73 \\
\text{FacultyNearCollaborator} &\equiv \text{NearCollaborator} \\
\text{NullMobilityResearcher} &\equiv \text{Researcher} \\
\text{StrongRelatedResearcher} &\equiv \text{Researcher} \\
\text{InheritedResearcher} &\equiv \text{Researcher} \\
\end{align*}
\]

- Object: instances of concept Researcher
- Relationships: role sharePublication
Preliminary Results

• Using the data, a collaboration network was learned
 – Object: instances of concept Researcher
 – Relationships: role sharePublication
 – 303 researchers that share a publication were found

• The proposal algorithms were run and some links were proposed
• Moreover...
Preliminary Results

- A more guided link prediction: Links among researchers from different groups
 - Infer $P(\text{link(Red,Blue)}|\text{evidence})$
 - $P(\text{PublicationCollaborator(R)}|\text{Researcher(R) \land \exists \text{hasSameInstitution.Researcher(B)}))=0.57$

- more evidence was gained...
 - Information about nodes that indirectly connect these 2 groups (I1,I2)
 - $P(\text{PublicationCollaborator(R)}|\text{Researcher(R) \land \exists \text{hasSameInstitution.Researcher(B)} \land \exists \text{sharePublication(I1)} \land \exists \text{sharePublication(B)} \land \exists \text{sharePublicaton(I2)} \land \exists \text{sharePublication(B)}))=0.65$
Preliminary Results

- A more guided link prediction: Links among researchers in the same group
 - For each $i=1,...,k$ and $j=1,...,n$
 - Infer $P(\text{link}(\text{Red}_i,\text{Red}_j) | \text{evidence})$ e $P(\text{link}(\text{Blue}_i,\text{Blue}_j) | \text{evidence})$
Conclusion

- An approach for predicting links in a network using the probabilistic description logic CrALC was proposed
 - In the network
 - Objects represents instances of a concept in the PDL crALC
 - Links represents a role in the PDL crALC
 - Inference with the PDL crALC indicates links that should be included in the network
- Experiments with Lattes Curriculum Platform showed the potential of the idea.
Perspectives

• Consideration of probabilistic networks
 – Since the new links came from probabilistic inference, a weight in the link can be considered

• Applications to larger domains
Acknowledgements

- CAPES
- CNPq
- FAPESP – projeto 2008/03995-5
Thank you!