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Representing Uncertainty

Uncertainty Representation

Semantic Web
Incompleteness or uncertainty are intrinsic of much information on
the World Wide Web
Most common approaches: probability theory, Fuzzy Logic

Logic Programming
Uncertain relationships among entities characterize many complex
domains
Most common approaches: probability theory→ Distribution
Semantics (Sato,1995)[6]

It underlies Probabilistic Logic Languages (ICL,PRISM, ProbLog,
LPADs),...
They define a probability distribution over normal logic programs
The distribution is extended to a joint distribution over worlds and
queries
The probability of a query is obtained from this distribution by
marginalization
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Probabilistic Logic Languages

Probabilistic Program Example (ProbLog)

Example: Program T , development of an epidemic or pandemic, if
somebody has the flu and the climate is cold.

C1 = epidemic : −flu(X ),epid(X ), cold .
C2 = pandemic : −flu(X ),not epid(X ),pand(X ), cold .
C3 = flu(david).
C4 = flu(robert).
F1 = 0.7 :: cold .
F2 = 0.6 :: epid(X ).
F3 = 0.3 :: pand(X ).

Distributions over facts
Worlds obtained by selecting or not every grounding of each
probabilistic fact
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Distribution Semantics

Distribution Semantics

Case of no function symbols: finite set of groundings of each
probabilistic fact F
a ProbLog fact p :: F is interpreted as F : p ∨ null : 1− p.
Atomic choice: selection of a value for a grounding of a
probabilistic fact F : (Fi , θj , k), where θj is a substitution grounding
Fi and k ∈ {0,1}.
Composite choice κ: consistent set of atomic choices
κ = {(F2, {X/david},1), (F2, {X/david},0)} not consistent
Boolean random variable Xij , for each (Fi , θj , k)
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Distribution Semantics

Distribution Semantics

Selection σ: a total composite choice (one atomic choice for every
grounding of each probabilistic fact)
σ = {(F1, {},1), (F2, {X/david},1), (F3, {X/david},1),
(F2, {X/robert},0), (F3, {X/robert},0)}
A selection σ identifies a logic program wσ called world:
wσ = TC ∪ {Fiθj |(Fi , θj ,1) ∈ σ}, where TC is the set of certain
rules of T (a normal logic program)
The probability of wσ is
P(wσ) = P(σ) =

∏
(Fi ,θj ,1)∈κ pi

∏
(Fi ,θj ,0)∈κ(1− pi)

For the example above:
P(wσ) = 0.7× 0.6× 0.3× (1− 0.6)× (1− 0.3)

Finite set of worlds: WT = {w1, . . . ,wm}
PW distribution over worlds:

∑
w∈WT

P(w) = 1
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Distribution Semantics

Distribution Semantics

Conditional probability of a query Q: P(Q|w) = 1 if w |= Q and 0
otherwise
Joint distribution of the worlds and queries P(Q,w):

P(Q,w) = P(Q|w)P(w)

P(Q) =
∑

w∈WT
P(Q,w) =

∑
w∈WT

P(Q|w)P(w) =∑
w∈WT :w |=Q P(w)

In the example T has 5 Boolean random variables
F1 → X11 (1 grounding)
F2 → X21 and X22 (2 groundings)
F3 → X31 and X32 (2 groundings)

and thus 32 worlds. The query epidemic is true in 5 of them. By
the sum of their probability, we otain P(epidemic) = 0.588.
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Probabilistic Ontologies under DISPONTE semantics

DISPONTE: DIstribution Semantics for Probabilistic ONTologiEs

Idea: annotate each axiom of an ontology with a probability
and assume that each axiom is independent of the others (see
URSW2011)
DISPONTE semantics exploits the translation of a probabilistic
ontology into a first order logic theory
A probabilistic ontology defines thus a distribution over normal
theories (worlds) obtained by including an axiom in a world with a
probability given by the annotation
The probability of a query is again computed from this distribution
with marginalization:
P(Q) =

∑
w P(Q,w) =

∑
w P(Q|w)P(w) =

∑
w :w |=Q P(w)

What’s new w.r.t. URSW2011?
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Probabilistic Ontologies under DISPONTE semantics

Probabilistic Ontologies under DISPONTE semantics

We can specify two kinds of probability for OWL DL axioms, under
the DISPONTE semantics:

1 p ::e E : epistemic probability
where p ∈ [0, 1] and E is any (TBox, RBox or ABox) axiom
p → represents our degree of belief in axiom E

e.g., p ::e C v D represents the fact that we believe in the truth of
C v D with probability p.

2 p ::s E : statistical probability
where p ∈ [0, 1] and E is a TBox or RBox axiom
p → represents information regarding random individuals from
certain populations

e.g., p ::s C v D means instead that a random individual of class C
has probability p of belonging to D.

3 Any unannotated axiom E is certain.

Riguzzi, Bellodi, Lamma, Zese (ENDIF) DISPONTE 9 / 20



Epistemic vs Statistical Probability

Observations

1 Epistemic probability
p ::e C v D represents the fact that we believe in the truth of C v D
with probability p
If two individuals i and j belong to class C, the probability that they
both belong to D under the epistemic probability is p

2 Statistical probability
p ::s C v D means that a random individual of class C has
probability p of belonging to D
If two individuals i and j belong to class C, thus the probability that
they both belong to D under statistical probability interpretation is
p × p.
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Inference in Probabilistic Ontologies

Explanations for a query

Each atomic choice is a triple (Fi , θj , k)

Fi is the formula obtained by translating the i-th axiom Ei
θj is a substitution
k ∈ {0,1}. k indicates whether (Fi , θj , k) is chosen to be included in
a world (k = 1) or not (k = 0)

If Fi is obtained from an unannotated axiom, then θj = ∅ and k = 1
If Fi is obtained from an axiom of the form p ::e Ei , then θj = ∅
If Fi is obtained from an axiom of the form p ::s Ei , then θj
instantiates the variables occurring in the logical translation of
axiom Ei .
Boolean random variables (Xij ) are, again, associated to
(instantiations of) logical formulas (Fi ) by substitution θj
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Inference in Probabilistic Ontologies

Inference and Query answering

Similarly to the case of probabilistic logic programming, the
probability of a query Q given a probabilistic ontology O can be
computed by first finding the explanations for Q in O
Explanation: subset of axioms of O that is sufficient for entailing Q
All the explanations for Q must be found, corresponding to all
ways of proving Q
Probability of Q → probability of the DNF formula

F (Q) =
∨

e∈EQ

(
∧

(Fi ,θj ,1)∈e

Xij

∧
(Fi ,θj ,0)∈e

Xij)

where EQ is the set of explanations and Xij is a random variable
with k = 1 and probability pi (and Xij is a random variable with
k = 0 and probability (1− pi))
We exploit an underlying DL reasoner for computing explanations,
and Binary Decision Diagrams for making these explanations
mutually incompatible.
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Examples

Example 1.1 - people+pets ontology

fluffy is a Cat with (epistemic) probability 0.4 and tom is a Cat
with probability 0.3; Cats are Pets with (epistemic) probability 0.6

0.4 ::e fluffy : Cat (1)
0.3 ::e tom : Cat (2)
0.6 ::e Cat v Pet (3)

Everyone who has a pet animal (hasAnimal .Pet) is a PetOwner ,
kevin has two animals, fluffy and tom

∃hasAnimal .Pet v PetOwner (4)
(kevin, fluffy) : hasAnimal (5)
(kevin, tom) : hasAnimal (6)

Q = kevin : PetOwner has two (mutually exclusive) explanations:
{(1), (3), not (2)} and {(2),(3)}
P(Q) = 0.4× 0.6× (1− 0.3) + 0.3× 0.6 = 0.348
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Examples

Example 1.2 - people+pets ontology

If we replace epistemic with statistical probability in axiom:

0.6 ::s Cat v Pet (7)

then for Q = kevin : PetOwner we have instances of axiom (7) in
(mutually exclusive) explanations: {(1), (7)/fluffy, not (2)}, {(1),
(7)/fluffy, (2), not ((7)/tom) } and {(2),(7)/tom}
P(Q) =
0.4×0.6×(1−0.3)+0.4×0.6×0.3×(1−0.6)+0.3×0.6 = 0.3768
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Query answering for Probabilistic OWL DL Ontologies

BUNDLE system
Binary decision diagrams for Uncertain reasoNing on Description Logic thEories

BUNDLE performs inference over probabilistic OWL DL ontologies
that follow the DISPONTE semantics
It exploits an underlying ontology reasoner able to return all
explanations for a query, such as Pellet [7]
Explanations for a query in the form of a set of sets of axioms
Pellet has been extended to record not only used axioms, but their
instantiations too, in order to correctly handle statistical probability
BUNDLE performs a double loop over the set of explanations and
over the set of (instantiated) axioms in each explanation, in which
it builds a BDD representing the set of explanations
JavaBDD library for the manipulation of BDDs
BUNDLE has been implemented in Java and will be available for
download from http://sites.unife.it/bundle
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Related works

Related works

(Laskey, and da Costa,2005) [4] proposed PR-OWL, an upper
ontology that provides a framework for building probabilistic
ontologies and allows to use the first-order probabilistic logic
MEBN ; instead we tried to provide a minimal extension to DL
(Koller et al.,1997) [3] present a probabilistic description logic
based on Bayesian networks that deals with statistical
terminological knowledge, but, differently from us, does not allow
probabilistic assertional knowledge about concept and role
instances
(Jaeger, 1994)[2] allows assertional knowledge about concept and
role instances together with statistical terminological knowledge.
We can also represent epistemic information with terminological
knowledge.
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Related works

Related works

(Ding, and Peng, 2004)[1] propose a probabilistic extension of
OWL that admits a translation into Bayesian networks. The
semantics assigns a probability distribution P(i) over individuals
and a probability to a class C as P(C) =

∑
i∈C P(i), while we

assign a probability distribution over theories
In (Nilsson, 1986)’s probabilistic logic [5]: a probabilistic
interpretation Pr defines a probability distribution over the set of
interpretations I. The probability of a logic formula φ according to
Pr , denoted Pr(φ), is the sum of all Pr(I) such that I ∈ I and I |= φ

while a probabilistic knowledge base may have multiple models that
are probabilistic interpretations, a probabilistic ontology under the
distribution semantics defines a single distribution over
interpretations

Worth to mention also alternative approaches to modeling
imperfect knowledge in ontologies, based on fuzzy logic
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Conclusions

Conclusions and future works

DISPONTE semantics for probabilistic ontologies inspired by the
distribution semantics of probabilistic logic programming

two ways (epistemic and statistical) to specify the probability of the
axioms of an ontology

The problem of inference in DISPONTE remains decidable if it
was so in the underlying description logic

BUNDLE system able to compute the probability of queries from an
uncertain OWL DL ontology
Computing explanations of a query is exponential in time
Computing the probability of a DNF formula of independent
Boolean random variables is a #P-complete problem (#P over the
number of computed explanations)

Future works
Extension to treat different degrees of statistical probability, by
choosing which variables in the logical translation are subject to
instantiation and which not (as proposed by (Halpern,1990]))
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Conclusions

Thanks.

Questions?
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