A Graph Regularization Based Approach to Transductive Class-Membership Prediction

Pasquale Minervini, Claudia d’Amato, Nicola Fanizzi

Computer Science Department • University of Bari, Italy

November, 11, 2012 - Boston
Contents

1. Introduction & Motivations

2. Class-membership with Transductive Learning
 - Problem Definition
 - The approach

3. Experimental Evaluation

4. Conclusions
Deductive Reasoning, usually adopted in the SW context, may fail in presence of inconsistent and/or noisy knowledge bases.

Machine learning methods can be adopted to perform approximate and uncertain reasoning allowing to derive conclusions which are not derivable or refutable from the knowledge base.

Issue: unlabeled instances could be present (because of the OWA)
Focus

Goal: Class-membership (concept) prediction task

Focus on trasductive semi-supervised learning methods
- family of machine learning methods that use both labeled and unlabeled data for training a learning algorithm
- in trasductive setting, the learning algorithm only aims at estimating the class-membership for a given training set, without generalizing to individuals outside such set.

Motivation: automation of the knowledge acquisition process
- the acquisition of labeled (training) data for a learning task often requires the manual effort of human agents ⇒ the cost may render a fully labeled training set infeasible
- the acquisition of unlabeled data is relatively inexpensive
- labelled data are not always available
Transductive Class-Membership Prediction

Definition

Given:

- a \textit{target} concept \(C \);
- a set of training individuals \(\text{Ind}_C(\mathcal{K}) \) in a knowledge base \(\mathcal{K} \) partitioned in:
 - \(\text{Ind}_C^+(\mathcal{K}) = \{ a \in \text{Ind}_C(\mathcal{K}) \mid \mathcal{K} \models C(a) \} \) positive examples,
 - \(\text{Ind}_C^-(\mathcal{K}) = \{ a \in \text{Ind}_C(\mathcal{K}) \mid \mathcal{K} \models \neg C(a) \} \) negative examples,
 - \(\text{Ind}_C^0(\mathcal{K}) = \{ a \in \text{Ind}_C(\mathcal{K}) \mid \mathcal{K} \not\models C(a) \land \mathcal{K} \not\models \neg C(a) \} \) unlabeled examples;
- a \textit{cost function} \(\text{cost}(\cdot) : \mathcal{F} \mapsto \mathbb{R} \), specifying the \textit{cost} associated to a set of class-memberships assigned to training individuals by \(f \in \mathcal{F} \), where \(\mathcal{F} \) is a space of labelling functions of the form \(f : \text{Ind}_C(\mathcal{K}) \mapsto \{+1, -1\} \);

Find: a \textit{labelling function} \(f^* \in \mathcal{F} \) \textbf{minimizing} the given cost function w.r.t. \(\text{Ind}_C(\mathcal{K}) \):

\[
f^* \leftarrow \arg \min_{f \in \mathcal{F}} \text{cost}(f).
\]

The function \(f^* \) can then be used to estimate the class-membership w.r.t. \(C \) for all training individuals \(a \in \text{Ind}_C(\mathcal{K}) \).
Graph-based semi-supervised approach

1. Choose/build a *target concept* C
2. Determine the training set $\text{Ind}_C(\mathcal{K})$ w.r.t. C in \mathcal{K} as given by positive, negative and unlabeled instances
3. Build the Nearest Neighbor (NN) Semantic Similarity graph
4. Define a cost over functions $f \in \mathcal{F}$ as a cost function
 - *finding a labeling function that is*
 - consistent with the given labels \Rightarrow loss function as a measure of consistency with the given labels
 - changes smoothly between similar instances \Rightarrow *Regularization by graph* \Rightarrow measure of smoothness among the similarity graph as a regularizer
Building the NN-Semantic Similarity graph

The *Similarity graph* is built as a matrix W where W_{ij} is the similarity value between two training examples x_i and x_j

- a NN graph, for each instance x_i, contains similarity the value only for the k most similar instances (the others are set to 0)
- employed a family of similarity measures between in individuals in a DL knowledge base [*d’Amato et al. @ URSW’09*]
The Family of Similarity Measure

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a DL knowledge base. Given a set of concept descriptions $F = \{F_1, F_2, \ldots, F_m\}$, corresponding weights w_1, \ldots, w_m, and $p > 0$, a family of dissimilarity functions $d_p^F: \text{Ind}(\mathcal{A}) \times \text{Ind}(\mathcal{A}) \mapsto [0, 1]$ is defined by:

$$d_p^F(a, b) := \frac{1}{|F|} \left[\sum_{i=1}^{|F|} w_i \left| \delta_i(a, b) \right|^p \right]^{1/p},$$

where the dissimilarity function $\delta_i \ (i \in \{1, \ldots, m\})$ is defined by:

$$\forall a, b \in \text{Ind}(\mathcal{A}): \quad \delta_i(a, b) = \begin{cases}
0 & F_i(a) \in \mathcal{A} \land F_i(b) \in \mathcal{A} \\
1 & F_i(a) \in \mathcal{A} \land \neg F_i(b) \in \mathcal{A} \lor \\
1/2 & \text{otherwise.}
\end{cases}$$
Quadratic Cost Criteria: Preliminaries

1. Original label space \(\{-1, +1\} \) relaxed to \([-1, +1]\) allows to express the confidence associated to a labeling
 - The labeling function space \(\mathcal{F} \) is relaxed to functions of the form \(f : \text{Ind}_C(K) \mapsto [-1, +1] \)
 - Labeling functions can be represented as vectors \(y \in [-1, +1]^n \) where \(n = |\text{Ind}_C(K)| \)

2. Let \(\hat{y} \in [-1, +1]^n \) be a possible labeling for \(n \) instances
 - \(\hat{y} \) be seen as a \((l + u) = n \) dimensional vector, where the first \(l \) indices refer to labeled instances, and the last \(u \) to unlabeled instances: \(\hat{y} = [\hat{y}_l, \hat{y}_u] \)
Quadratic Cost Criteria...

- **Consistency** of \hat{y} w.r.t. the original labels can be formulated *in the form of a quadratic cost*

 \[
 \sum_{i=1}^{l} (\hat{y}_i - y_i)^2 = \|\hat{y}_l - y_l\|^2
 \]

- Labellings can be regularised w.r.t. the graph structure *alternatively as:*

 \[
 0.5 \sum_{i,j=1}^{n} W_{ij} (\hat{y}_i - \hat{y}_j)^2 = \hat{y}^T L \hat{y}
 \]

where W is the semantic similarity graph and $L = D - W$, with D the diagonal matrix s.t. $D_{ii} = \sum_j W_{ij}$, is the unnormalized graph Laplacian [Belkin et al. @ COLT’04]

\[
(D^{-0.5} \hat{y})^T L (D^{-0.5} \hat{y})
\]

[Zhou et al. @ ICML’05]
Putting consistency and regularization together two *quadratic cost criteria* are obtained:

1. **Regression on Graph (RG)**
 \[
 cost(\hat{y}) = \|\hat{y}_l - y_l\|^2 + \mu \hat{y}^T L \hat{y} + \mu \epsilon \|\hat{y}\|^2; \quad [\text{Belkin et al. @ COLT'04}]
 \]

2. **Consistency Method (CM)**
 \[
 cost(\hat{y}) = \|\hat{y}_l - y_l\|^2 + \mu (D^{-0.5} \hat{y})^T L (D^{-0.5} \hat{y}) + \|\hat{y}_u\|^2. \quad [\text{Zhou et al. @ ICML'5}]
 \]

By recurring to derivative, finding the minimum for **RG** (resp. **CM**) consists in solving a (possibly sparse) linear system whose *time complexity is nearly linear* in the number of non-zero entries in the coefficient matrix.
Experiments: Setup

GOAL: evaluation and comparison of *inductive* and *transductive methods* for class-membership prediction

- 20 random queries C created for each ontology (Tab.)
 - C (resp. $\neg C$) should contain at least 10 instances
 - Pellet Reasoner v2.3.0 employed for building the $TrSet$ $Ind_{C}(K)$
- **Trasductive Methods:** Regression Graph (RG), Consistency Method (CM), Label Propagation ((LP))
- **Inductive Methods:** Soft Margin SVM (SM-SVM), Laplacian SVM (LapSVM), k-NN ($k = \sqrt{l}$ where $l =$ num. labeled ex. ((\sqrt{l}-NN))

<table>
<thead>
<tr>
<th>Ontology</th>
<th>Expressivity</th>
<th>#Axioms</th>
<th>#Indiv.</th>
<th>#Classes</th>
<th>#Obj.Prop.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioPax (Prot.)</td>
<td>$ALCHN(D)$</td>
<td>773</td>
<td>49</td>
<td>55</td>
<td>47</td>
</tr>
<tr>
<td>Family-Tree</td>
<td>$SROIF(D)$</td>
<td>2059</td>
<td>368</td>
<td>22</td>
<td>52</td>
</tr>
<tr>
<td>Leo</td>
<td>$ALCHIF(D)$</td>
<td>430</td>
<td>61</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>MDM0.73</td>
<td>$ALCHOF(D)$</td>
<td>1098</td>
<td>112</td>
<td>196</td>
<td>22</td>
</tr>
<tr>
<td>Wine</td>
<td>$SHOIN(D)$</td>
<td>1046</td>
<td>218</td>
<td>142</td>
<td>21</td>
</tr>
</tbody>
</table>
Metrics

Match Rate Case of an individual that got the same label by the reasoner and the inductive classifier.

Omission Error Case of an individual for which the inductive method could not determine whether it was relevant to the query concept or not while it was found relevant by the reasoner.

Commission Error Case of an individual found to be relevant to the query concept while it logically belongs to its negation or vice-versa.

Induction Case of an individual found to be relevant to the query concept or to its negation, while either case is not logically derivable from the knowledge base.
Results

<table>
<thead>
<tr>
<th></th>
<th>Leo</th>
<th>BioPAX (Prot.)</th>
<th>MDM0.73</th>
<th>Wine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Match</td>
<td>Omission</td>
<td>Commission</td>
<td>Induction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>1 ± 0</td>
<td>0.004 ± 0.028</td>
<td>0.008 ± 0.039</td>
<td>0.002 ± 0.02</td>
</tr>
<tr>
<td>CM</td>
<td>1 ± 0</td>
<td>0.002 ± 0.02</td>
<td>0.013 ± 0.036</td>
<td>0.002 ± 0.02</td>
</tr>
<tr>
<td>LP</td>
<td>0.942 ± 0.099</td>
<td>0.002 ± 0.02</td>
<td>0.014 ± 0.051</td>
<td>0.002 ± 0.02</td>
</tr>
<tr>
<td>SM-SVM</td>
<td>0.963 ± 0.1</td>
<td>0 ± 0</td>
<td>0.026 ± 0.068</td>
<td>0.002 ± 0.02</td>
</tr>
<tr>
<td>LapSVM</td>
<td>0.978 ± 0.068</td>
<td>0 ± 0</td>
<td>0.026 ± 0.068</td>
<td>0.002 ± 0.02</td>
</tr>
<tr>
<td>√l-NN</td>
<td>0.971 ± 0.063</td>
<td>0 ± 0</td>
<td>0.026 ± 0.068</td>
<td>0.002 ± 0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Match</th>
<th>Omission</th>
<th>Commission</th>
<th>Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>0.953 ± 0.063</td>
<td>0.003 ± 0.016</td>
<td>0.011 ± 0.032</td>
<td>0.015 ± 0.039</td>
</tr>
<tr>
<td>CM</td>
<td>0.953 ± 0.063</td>
<td>0.001 ± 0.009</td>
<td>0.013 ± 0.036</td>
<td>0.018 ± 0.04</td>
</tr>
<tr>
<td>LP</td>
<td>0.942 ± 0.065</td>
<td>0 ± 0</td>
<td>0.026 ± 0.046</td>
<td>0.033 ± 0.054</td>
</tr>
<tr>
<td>SM-SVM</td>
<td>0.793 ± 0.252</td>
<td>0 ± 0</td>
<td>0.174 ± 0.255</td>
<td>0.033 ± 0.054</td>
</tr>
<tr>
<td>LapSVM</td>
<td>0.915 ± 0.086</td>
<td>0 ± 0</td>
<td>0.052 ± 0.065</td>
<td>0.033 ± 0.054</td>
</tr>
<tr>
<td>√l-NN</td>
<td>0.944 ± 0.069</td>
<td>0 ± 0</td>
<td>0.023 ± 0.051</td>
<td>0.033 ± 0.054</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Match</th>
<th>Omission</th>
<th>Commission</th>
<th>Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>0.24 ± 0.03</td>
<td>0 ± 0.005</td>
<td>0.007 ± 0.017</td>
<td>0.5 ± 0.176</td>
</tr>
<tr>
<td>CM</td>
<td>0.242 ± 0.028</td>
<td>0 ± 0.005</td>
<td>0.005 ± 0.015</td>
<td>0.326 ± 0.121</td>
</tr>
<tr>
<td>LP</td>
<td>0.239 ± 0.035</td>
<td>0 ± 0.005</td>
<td>0.008 ± 0.021</td>
<td>0.656 ± 0.142</td>
</tr>
<tr>
<td>SM-SVM</td>
<td>0.235 ± 0.036</td>
<td>0 ± 0</td>
<td>0.012 ± 0.024</td>
<td>0.753 ± 0.024</td>
</tr>
<tr>
<td>LapSVM</td>
<td>0.238 ± 0.033</td>
<td>0 ± 0</td>
<td>0.009 ± 0.021</td>
<td>0.753 ± 0.024</td>
</tr>
<tr>
<td>√l-NN</td>
<td>0.241 ± 0.031</td>
<td>0 ± 0</td>
<td>0.006 ± 0.018</td>
<td>0.753 ± 0.024</td>
</tr>
</tbody>
</table>

C. d'Amato | Transductive Class-Membership Prediction
Discussion

- **Family-Tree** ontology (not reported), provided 0.76 ± 0.13 match rates and 0.24 ± 0.13 induction rates for all but **LP** method, where the induction rates were 0.21 ± 0.14.

- In general, LapSVM outperformed the other two non-SSL SVM classification methods.

- Trasductive approaches generally outperform inductive approaches in terms of *commission error* and *match rate*.

- Trasductive approaches resulted more conservative than inductive approaches for MDMO.73 and WINE ontologies, showing:
 - highest omission rates
 - lowest induction rates

- The proposed **RG** and **CM** always outperform the **LP** adopted as a baseline trasductive methods.
Conclusions: A method for trasductive class-membership prediction based on graph-based regularization has been proposed. It relies on quadratic cost criteria whose optimization can be reduced to solve a (possibly sparse) linear system. Experimental evaluations showed the improvement of the trasductive approach over the inductive one particularly in terms of commission error and match rate.

Future Works:
- Deeply investigate on the correlation between the order of magnitude of unlabeled instances and the results of the proposed method.
That’s all!
Questions?