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Heterogeneous Data

Heterogeneous resources of knowledge about the same domain:

Non or simply structured data (e.g., sensor data, signals, DB
tracks, texts, bag of words, etc) containing
(alpha)numeric feature based data

For instance a database of a company containing anagraphic data,
salaries, evaluations, performances, and other relevant information
about the employees.

Structured knowledge (e.g., ontologies = T-box + A-box)
describing the entity types, the relations and the
objects of a particular domain.

For instance the ontology for the organizational structure of a
company describing, the roles, the activities, the responsibilities,
etc. and the instantiation to the set of the company employees.
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Heterogeneous Inferences

Different type of data support different type of inference

Non or simply structured data enables the discovering of new
knowledge as regularity patterns of data via
inductive reasoning.

Usually older employees earn more than their younger colleagues

Structured knowledge allows to discover new knowledge via
inferencing of classes or properties of objects based
on logical deductive reasoning.

If a person is a project leader than he or she coordinates the work
of all the people allocated to the project
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Combining heterogeneous Inferences

Non or simply structured data + Structured knowledge will
enable the combination of knowledge induced from
data and knowledge encoded in an ontology in a new
form of mixed reasoning, that we call data drive
inference.

Usually older employees earn more than their younger colleagues

+

If a person is a project leader than he or she coordinates the work
of all the people allocated to the project

=

Since project coordinators receive always the highest salary within
a project team, the oldest person of project team, is most proba-
bly the project coordinator
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objectives

Abstract objectives

1. To define a reference framework capable to represent
quantitative data and logical knowledge in an integrated way

2. extend machine learning algorithms to support the induction
of new knowledge from quantitative data integrated with
logical knowledge

3. extend the logical reasoning algorithms to support logical
inference in presence of knowledge induced from logical data
integrated with logical knowledge



objectives

Concrete contributions (EKAW 2012)

1. define the notion of ontology integrated with a dataset, called
grounded ontologies

2. introduce semantically enriched association rules to represent
knowledge induced from grounded ontologies

3. define a simple algorithm for learning semantically enriched
association rules from grounded ontologies.

Concrete contributions (URSW 2012)

4. define a new reasoning task, called the most plausible model
that computes the most common model of an ontology w.r.t.,
a set of semantically enriched association rules

5. propose a first approximated tableaux algorithm to compute
the most plausible model
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Grounded Ontology

I Dataset D is a non
empty set of objects

I f1, . . . , fn are n
feature functions
defined on every
element of D, with
fi : D→ Di .

I Knowledge base K on an
alphabet Σ, composed
of three disjoint ets of
symbols, ΣC , ΣR and
ΣI , is a set K of DL
inclusion axioms and DL
assertions.

I A grounding is a total function

g : D→ ΣI

I for every d ∈ D there is a
constant a ∈ ΣI with g(d) = a.

I intuitively g(d) = a represents
the fact that data d is an
observation about the object a
of the knowledge base;

I there can be more than one
observation for a in D. This
implies that g(d) = a and
g(d′) = a for d 6= d′
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Grounded Ontology - Example

ID E ID salary year

001 E01 30,000 2010
002 E01 35,000 2011
003 E01 40,000 2012
004 E02 28,000 2011
005 E02 33,000 2012
006 E03 24,000 2012
007 E04 25,000 2011
008 E04 25,000 2012
009 E05 40,000 2012

> v Person t Prj
Person v ∃leads.Prj t ∃worksFor .Prj
Prj v (= 1)leads− Prj v ∃worksFor−

dom(worksFor) v Person dom(leads) v Person

leads(Alice,P) worksFor(Bob,P) worksFor(Chris,P)
leads(Bob,Q) worksFor(Chris,Q) worksFor(Dan,Q)
leads(Alice,R) worksFor(Dan,R)
allDifferent(Alice,Bob,Chris,Dan)
>(Eva), ∀leads⊥(Chris) ∀leads⊥(Dan)

g

001 Alice
002 Alice
003 Alice
004 Bob
005 Bob
006 Chris
007 Dan
008 Dan
009 Eva
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Grounding allow to join data with knowledge

Let (K,D, g) be a grounded ontology, the semantic enrichment of
D w.r.t., K, denoted by D+K is dataset containing the same data
as D with the following additional semantic attributes:

Conceptual attributes for every primitive concept C ∈ Σc the
attribute fC is defined as follows:

fC (d) =


1 if K |= C (g(d))
0 if K |= ¬C (g(d))
unknown otherwise

Relational attributes for every relation R ∈ Σr the attribute fR is
defined as follows:

fR(d) =


1 if K |= ∃R(g(d))
0 if K |= ¬∃R(g(d))
unknown otherwise
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Join data with knowledge - example

ID E ID salary year Person Prj leads worksFor

001 E01 30,000 2010 1 0 1 -
002 E01 35,000 2011 1 0 1 -
003 E01 40,000 2012 1 0 1 -
004 E02 28,000 2011 1 0 1 1
005 E02 32,000 2012 1 0 1 1
006 E03 24,000 2012 1 0 0 1
007 E04 25,000 2011 1 0 0 1
008 E04 25,000 2012 1 0 0 1
009 E05 40,000 2012 - - - -



Association Rules

Definition

Given a dataset D made by a set of attributes {A1, . . . ,An}
I an itemset of D is an expression

fi1 = v1 ∧ · · · ∧ fik = vk (1)

I the support of an itemset is the number of tuples (rows) in D
that match the itemset.

I Association rule is an expression

fi1 = v1 ∧ · · · ∧ fik = vk ⇒ fik+1 = vk+1 ∧ · · · ∧ fin = vn (2)

I The confidence of (2) is the fraction of cases in D that match
the conclusion amongs the one that matches the premises.

conf (θ ⇒ ϕ) =
support(θ ∧ ϕ)

support(θ)



Semantically Enriched Association Rules (SEAR)

Semantically enriched association rules

Let (K,D, g) be a grounded ontology A semantically enriched
association rule is an association rule defined on the semantically
enriched dataset D+K.



Learning association rules

I Association rules are learned by
I finding the frequent itemsets w.r.t. a given support threshold,
I extracting the rules from the frequent itemsets satisfying a

given confidence threshold.

I The first subproblem is the most challenging/expensive
I We use the standard Apriori algorithm

I key assumption: a set of variables is frequent only if all its
subsets are frequent,

I itemsets are built iteratively, incrementing the length at each
step.



Learing SEAR: example

ID E ID salary year Person Prj leads worksFor

001 E01 30–40K 2010 1 0 1 -
002 E01 30–40K 2011 1 0 1 -
003 E01 30–40K 2012 1 0 1 -
004 E02 20–30K 2011 1 0 1 1
005 E02 30–40K 2012 1 0 1 1
006 E03 20–30K 2012 1 0 0 1
007 E04 20–30K 2011 1 0 0 1
008 E04 20–30K 2012 1 0 0 1
009 E05 30–40K 2012 - - 0 -

Examples of SEARs
fleads = 1, fyear = 2011 ⇒ fSalary = 30–40K conf = 4/4 = 1.00

⇒ fPerson = 1 conf = 8/9 = 0.88
⇒ fProject = 0 conf = 8/9 = 0.88

fSalary = 30–40K ⇒ fleads = 1 conf = 4/5 = 0.80
fleads = 1 ⇒ fSalary = 30–40K conf = 4/5 = 0.80

fSalary = 20–30K ⇒ fleads = 0 conf = 3/4 = 0.75
fyear = 2012, fSalary = 30–40K ⇒ fleads = 1 conf = 2/3 = 0.66



objectives

Concrete contributions

1. defined the notion of ontology grounded on a set of data, also
called grounded ontologies

2. introduced semantically enriched association rules to represent
knowledge induced from grounded ontologies

3. defined a simple algorithm for learning semantically enriched
association rules from grounded ontologies.

Concrete contributions

4. defined a new reasoning task, called the most plausible model
that computes the most common model of an ontology w.r.t.,
a set of semantically enriched association rules

5. proposed a first approximated tableaux algorithm to compute
the most plausible model
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The reasoning task

Definition (Inference Problem)

Given: D, K, the set R of SEARs, an data item d0, a
concept C0, and the grounding g(d0) = x0,

Determine: the model Ir for K ∪ {C0(x0)} representing the most
plausible model for K ∪ {C0(x0)} w.r.t., g and R.



Plausibility ordering

Definition (Plausibility ordering (first attempt))

Let (K, {d}, g) be a grounded ontology:

I, d, g |= fi = a if fi (d) = a

I, d, g |= fC = 1 if g(d)I ∈ CI

I, d, g |= fC = 0 if g(d)I 6∈ CI

I, d, g |= fR = 1 if g(d)I ∈ (∃R.>)I

I, d, g |= fR = 0 if g(d)I 6∈ (∃R.>)I

I, d, g |= φ1 ∧ · · · ∧ φn if I, d, g |= φi for 1 ≤ i ≤ n

I, d, g |= φ⇒ ψ if I, d, g 6|= φ or I, d, g |= ψ

p(I, d, g , α) =

{
0 If I, d, g |= α
2 ∗ conf (α)− 1 Otherwise

I � J iff
∑
α∈AR

p(I, d, g , α) ≥
∑
α∈AR

p(J , d, g , α)
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ALC Tableaux

Tableaux

Let C0 be an ALC-concept in NNF. In order to test satisfiability of
C0, the ALC tableaux algorithm starts with A0 := {C0(x0)}, and
applies the following rules:

Rule Condition −→ Effect

→u C u D(x) ∈ A −→ A := A ∪ {C(x),D(x)}
→t C t D(x) ∈ A −→ A := A ∪ {C(x)} or A ∪ {D(x)}
→∃ ∃R.C(x) ∈ A −→ A := A ∪ {R(x , y),C(y)}
→∀ ∀R.C(x),R(x , y) ∈ A −→ A := A ∪ {C(y)}
. . . . . . −→ . . .

Indeterministic Choices

In applying →t rule we have to do a choice, either we expand A
with C (x) or with D(x). Depending on the choice we can generate
a more or less plausible model.
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t-rule - a simple example

Example (Simple)

C v A t B
fSalary (d) = 27
fSalary = 10–20⇒ A conf = 0.77
fSalary = 20–30⇒ B conf = 0.66
g(d) = x0

C(x0)

C(x0)
A t B(x0)

C(x0)
A t B(x0)

A(x0)

C(x0)
A t B(x0)

B(x0)

There are three possible models:

∆I AI BI CI
∑

α∈AR p(I, d, g , α)

I1 {x0} {x0} ∅ {x0} 0.32
I2 {x0} ∅ {x0} {x0} 0.00
I3 {x0} {x0} {x0} {x0} 0.00

The plausibility ordering is I2 ≺ I1, I3 ≺ I1
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A complete simple example

Example (The most plausible model for Eva)

ID E ID salary year Person Prj leads worksFor

009 E05 30–40K 2012 - - - -

>(Eva)

> v Person t Prj Person t Prj(Eva)
⇒ fPerson = 1[0.88] Person(Eva)
Person v ∃worksFor .Prj t ∃leads.Prj ∃worksFor .Prj t ∃leads.Prj
fSalary (Eva) = 30–40
fSalary = 30–40⇒ fleads = 1 ∃leads.Prj(eva)
→∃ leads(eva, p), Prj(p)
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fSalary (Eva) = 30–40
fSalary = 30–40⇒ fleads = 1 ∃leads.Prj(eva)
→∃ leads(eva, p), Prj(p)



Conclusions & Future Work

Conclusions:

I Proposed a framework for learning association rules from
hybrid sources of information

I Preliminary ideas on exploitation of the learnt association
rules during the deductive reasoning process

Future works:

I Experimental evaluation of the proposed preliminary
methodology

I Extension and consolitation of the theoretical framework to
include also relations between objects.
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