

Introducing Ontological CP-nets

Tommaso Di Noia and Thomas Lukasiewicz

User profile

Sci-Fi movies
Action movies
Jogging
Listen to music
Talk about the weather

Quantitative Preferences

Sci-Fi movies [0.7]

Action movies [0.6]

Listen to music while jogging [0.8]

Talk about the weather while jogging [0.1]

Qualitative Preferences

Sci-Fi movies > Action movies

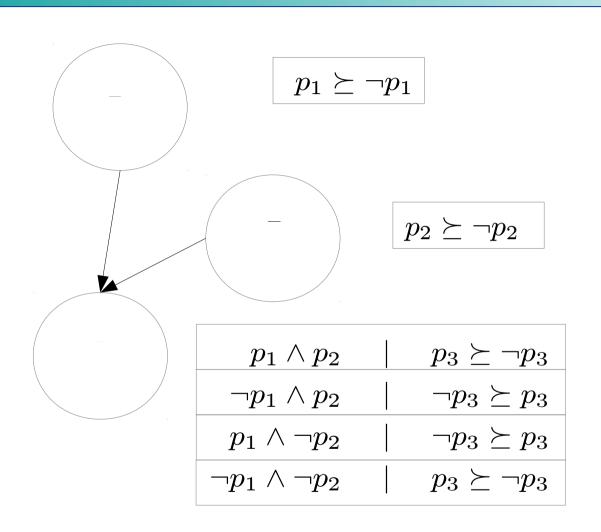
while jogging | Listen to music

> Talk about the weather

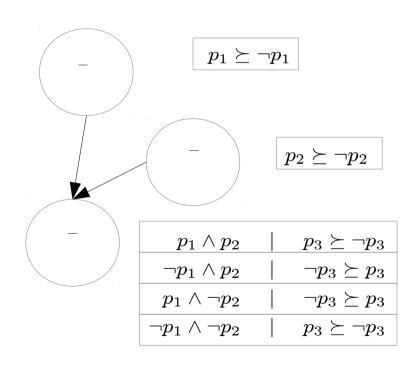
Conditionally Preferentially Independent (CPI)

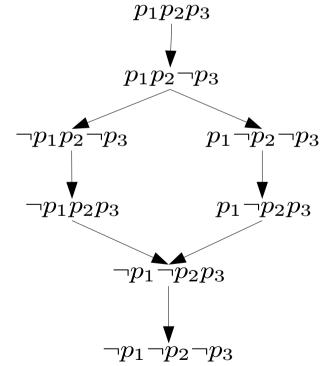
- $A, B \in \mathcal{V}$ two variables
- $\mathcal{R} \subset \mathcal{V}$ s.t. A, B and \mathcal{R} partition \mathcal{V}

Given $\rho \in \mathcal{R}$, A is CPI of B iff


• for all $\alpha_1, \alpha_2 \in A$ and $\beta_1, \beta_2 \in B$ we have: $\alpha_1 \beta_1 \rho \succ \alpha_2 \beta_1 \rho$ iff $\alpha_1 \beta_2 \rho \succ \alpha_2 \beta_2 \rho$.

CP-Nets



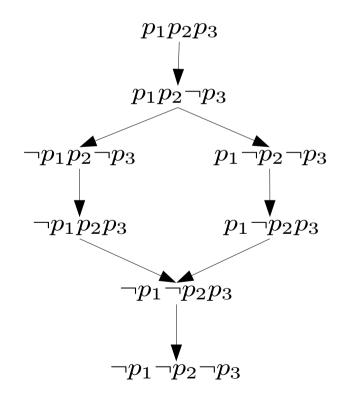


Semantics

• Worsening flip: a change in the value of a variable to a value which is less preferred by the conditional preference statement for that variable

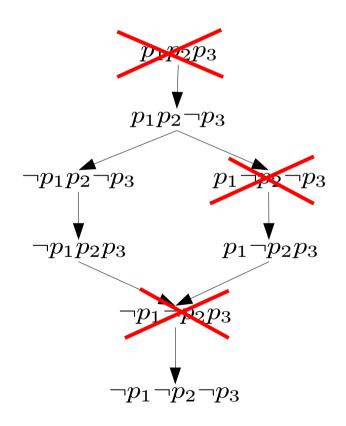
Inference

- Dominance query: given two outcomes o_1 and o_2 , decide wether $o_1 > o_2$
- Outcome Oprimization: find the optimal outcome (if any)



Constrained CP-nets

• A CP-net whose variables are constrained via a set of constraints C



Constrained CP-nets

• A CP-net whose variables are constrained via a set of constraints C

$$C = \begin{cases} \neg (P_1 \land P_2 \land P_3) \\ \neg (P_1 \land \neg P_2 \land \neg P_3) \\ \neg (\neg P_1 \land \neg P_2 \land P_3) \end{cases}$$

Constrained CP-nets

- Satisfiability of a CP-net
- Feasible outcomes
- Eligibility of a set of CP-statements

$$(\alpha \succ \beta \mid \gamma) \longmapsto \alpha \Rightarrow \gamma$$

Ontological CP-Nets

- Variable values are DL formulas
- Formulas are satisfiable w.r.t an ontology
- Formulas are constrained via an ontology
- No equivalent cp statements

Ontological CP-nets

- Implicitly constrained variables
- (Un)Satisfiable preferences $(\alpha \succ \beta \mid \gamma) \longmapsto (\alpha \Rightarrow \gamma) \sqcap (\alpha \Rightarrow \neg \beta)$
- Outcome definition
 - Clause encoding
- Dominance and eligibility testing
- Complexity of reasoning

Thank you

