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Abstract. Automated ontology population using information extrac-
tion algorithms can produce inconsistent knowledge bases. Confidence
values assigned by the extraction algorithms may serve as evidence help-
ing to repair produced inconsistencies. The Dempster-Shafer theory of
evidence is a formalism, which allows appropriate interpretation of ex-
tractors’ confidence values. The paper presents an algorithm for trans-
lating the subontologies containing conflicts into belief propagation net-
works and repairing conflicts based on the Dempster-Shafer plausibility.

1 Introduction

One of the approaches for ontology population considers using automatic infor-
mation extraction algorithms to annotate natural language data already avail-
able on the Web [1, 2]. Unsupervised information extraction algorithms do not
produce 100% correct output, which may lead to inconsistency of the whole
knowledge base produced in this way. Also information extracted from different
sources can be genuinely contradictory. So when performing fusion of knowledge
extracted from different sources it is important to resolve such inconsistencies
automatically or provide the user with a ranking of conflicting options estimating
how likely each statement is to be wrong. Extraction algorithms can often esti-
mate the reliability of their output by attaching confidence values to produced
statements [3]. Uncertain reasoning using these confidence values can help to
evaluate the plausibility of statements and rank the conflicting options. Most
of the ongoing research in the field of applying uncertain reasoning to the Se-
mantic Web focuses on fuzzy logic and probabilistic approaches. Fuzzy logic was
designed to deal with representation of vagueness and imprecision. This inter-
pretation is not relevant for the problem occurring during population of crisp
OWL knowledge bases, where we need to assess the likelihood for a statement
to be true or false. The probabilistic approach is more appropriate for dealing
with such problems. However, as stated in [4], axioms of probability theory are
implied by seven properties of belief measures. One of them is completeness,
which states that “a degree of belief can be assigned to any well-defined propo-
sition”. However, this property cannot be ensured when dealing with confidence
degrees assigned by extractors, because they do not always carry information
about the probability of a statement being false. The Dempster-Shafer theory of



evidence [5] presents a formalism that helps to overcome this problem. It allows
belief measurements to be assigned to sets of propositions, thus specifying explic-
itly degrees of ignorance. In this paper, we describe an algorithm for resolving
conflicts using the Dempster-Shafer belief propagation approach.

2 Related Work

There are several studies dealing with inconsistency handling in OWL ontolo-
gies, among others [6] and [7]. The general algorithm for the task of repairing
inconsistent ontologies consists of two steps:

– Ontology diagnosis: finding sets of axioms, which contribute to inconsistency;
– Repairing inconsistencies: changing/removing the axioms most likely to be

erroneous.

Choosing the axioms for change and removal is a non-trivial task. Existing algo-
rithms working with crisp ontologies (e.g., [7]) utilize such criteria as syntactic
relevance (how often each entity is referenced in the ontology), impact (the influ-
ence of removal of the axiom on the ontology should be minimized) and prove-
nance (reliability of the source of the axiom). The last criterion is especially
interesting for the automatic ontology population scenario since extraction al-
gorithms do not extract information with 100% accuracy. A study described in
[8] specifies an algorithm which utilizes the confidence value assigned by the
extraction algorithm. The strategy employed there was to order the axioms ac-
cording to their confidence and add them incrementally, starting from the most
certain one. If adding the axiom led to inconsistency of the ontology then a
minimal subconsistent ontology was determined and the axiom with the lowest
confidence was removed from it. A disadvantage of such a technique is that it
does not take into account the impact of an axiom: e.g., when an axiom vio-
lates several restrictions, it does not increase its chances to be removed. Also
it does not consider the influence of redundancy: if the same statement was ex-
tracted from several sources, this should increase its reliability. Using uncertain
reasoning would provide a more sound approach to rank potentially erroneous
statements and resolve inconsistencies.
In the Semantic Web domain the studies on uncertain reasoning are mostly
focused on two formalisms: probability theory and fuzzy logic. Existing imple-
mentations of fuzzy description logic [9, 10] are based on the notion of fuzzy
set representing a vague concept. The uncertainty value in this context denotes
a membership function µF (x) which specifies the degree to which an object x
belongs to a fuzzy class F . Probabilistic adaptations of OWL-DL include Bayes
OWL[11] and PR-OWL [12]. However, both of these formalisms do not fully
reflect the properties of the problems we are dealing with in the fusion scenario.
In [4] a framework for choosing an appropriate uncertainty handling formalism
was presented. The framework is based on the following seven properties of belief
measurements:



1. Clarity : Propositions should be well-defined.
2. Scalar continuity : A single real number is both necessary and sufficient for

representing a degree of belief.
3. Completeness: A degree of belief can be assigned to any well-defined propo-

sition.
4. Context dependency : The belief assigned to a proposition can depend on the

belief in other propositions.
5. Hypothetical conditioning : There exists some function that allows the belief

in a conjunction of propositions to be calculated from the belief in one propo-
sition and the belief in the other proposition given that the first proposition
is true.

6. Complementarity : The belief in the negation of a proposition is a monoton-
ically decreasing function of the belief in the proposition itself.

7. Consistency : There will be equal belief in propositions that have the same
truth value.

It was proven that accepting all seven properties logically necessitates the axioms
of probability theory. Alternative formalisms allow weakening of some proper-
ties. Fuzzy logic deals with the case when the clarity property does not hold,
i.e., when concepts and relations are vague. Such an interpretation differs from
the one we are dealing with in the fusion scenario, where the ontology TBox
contains crisp concepts and properties. Confidence value attached to a type as-
sertion ClassA(Individual1) denotes a degree of belief that the statement is true
in the real world rather than the degree of inclusion of the entity Individual1
into a fuzzy concept ClassA. This makes fuzzy interpretation inappropriate for
our case.
Probabilistic interpretation of the extraction algorithm’s confidence may lead to
a potential problem. If we interpret the confidence value c attached to a state-
ment returned by an extraction algorithm as a Bayesian probability value p, we,
at the same time, introduce a belief that the statement is false with a probabil-
ity 1 − p. However, the confidence of an extraction algorithm reflects only the
belief that the document supports the statement and does not itself reflect the
probability of a statement being false in the real world. Also while statistical
extraction algorithms ([13]) are able to assign a degree of probability to each
extracted statement, rule-based algorithms ([14, 15]) can only assign the same
confidence value to all statements extracted by the same rule based on the rule’s
performance on some evaluation set. Any extraction produced by a rule with a
low confidence value in this case will serve as a negative evidence rather than
simply lack of evidence. This issue becomes more important if the reliability of
sources is included into analysis: it is hard to assign the conditional probability
of a statement being false given that the document supports it. It means that
the completeness property does not always hold.
The Dempster-Shafer theory of evidence [5] allows weakening of the complete-
ness property. Belief can be assigned to sets of alternative options rather than
only to atomic elements. In the case of binary logic, it means that the degree
of ignorance can be explicitly represented by assigning a non-zero belief to the



set {true;false}. On the other hand, it still allows the Bayesian interpretation of
confidence to be used, when it is appropriate (in this case the belief assigned to
the set {true;false} is set to 0). This paper presents an algorithm for resolving in-
consistencies by translating the inconsistency-preserving subset of ontology into
the Dempster-Shafer belief network and choosing the axioms to remove based
on their plausibility. We are not aware of other studies adapting the Dempster-
Shafer approach to the Semantic Web domain.
Alternative approaches to uncertainty representation, which were not applied so
far to ontological modelling, include probability intervals [16] and higher-order
probability [17]. However, the first of these approaches uses min and max opera-
tors for aggregation, which makes it hard to represent cumulative evidence, and
the second focuses on resolving different kinds of problems (namely expressing
probability estimations of other probability estimations). There are also other
approaches to belief fusion in the Semantic Web (e.g., [18] and [19]). These stud-
ies deal with social issues of representing trust and provenance in a distributed
knowledge base and focus on the problem of establishing the certainty of state-
ments asserted by other people. These approaches, however, do not focus on
resolving the inconsistencies and just deal with direct conflicts (i.e., statement
A is true vs statement A is false). They do not take into account ontological
inference and mutual influence of statements in the knowledge base. In this way,
they can be considered complementary to ours.

3 The Dempster-Shafer Belief Theory

Dempster-Shafer theory of evidence differs from the Bayesian probability the-
ory as it allows assigning beliefs not only to atomic elements but to sets of
elements as well. The base of the Dempster’s belief distribution is the frame of
discernment (Ω) - an exhaustive set of mutually exclusive alternatives. A belief
distribution function (also called mass function or belief potential) m(A) repre-
sents the influence of a piece of evidence on subsets of Ω and has the following
constraints:

– m(�) = 0 and
–

∑
A⊆Ω m(A) = 1

m(A) defines the amount of belief assigned to the subset A. When m(A) > 0, A
is referred to as a focal element. If each focal element A contains only a single
element, the mass function is reduced to be a probability distribution. Mass also
can be assigned to the whole set of Ω. This represents the uncertainty of the
piece of evidence about which of the elements in Ω is true. In our case each mass
function is defined on a set of variables D = {x1, ..., xn} called the domain of m.
Each variable is boolean and represents an assertion in the knowledge base. For
a single variable we can get degree of support Sup(x) = m({true}) and degree
of plausibility Pl(x) = m({true}) + m({true; false}). Plausibility specifies how
likely it is that the statement is false. Based on plausibility it is possible to select
from a set of statements the one to be removed.



4 Building Belief Networks

Our algorithm consists of four steps:

1. Inconsistency detection.
At this stage we select the subontology containing all axioms contributing
to an inconsistency.

2. Constructing a belief network.
At this stage the subontology found at the previous step is translated into
a belief network.

3. Assigning mass distributions.
At this stage we assign mass distribution functions to nodes.

4. Belief propagation.
At this stage we propagate uncertainties through the network and update
the confidence degrees of ABox statements.

4.1 Illustrating Example

In order to illustrate our algorithm, we use an example from the banking do-
main. Supposedly, we have an ontology describing credit card applications, which
defines two disjoint classes of applicants: reliable and risky. In order to be reli-
able, an applicant has to have UK citizenship and evidence that (s)he was never
bankrupt in the past. For example, the TBox contains the following axioms:
T1: RiskyApplicant v CreditCardApplicant
T2: ReliableApplicant v CreditCardApplicant
T3: RiskyApplicant v ¬ReliableApplicant
T4: ReliableApplicant ≡ ∃wasBankrupt.False u ∃hasCitizenship.UK
T5: > v≤ 1wasBankrupt (wasBankrupt is functional)
The ABox contains the following axioms (with attached confidence values):
A1: RiskyApplicant(Ind1) : 0.7
A2: wasBankrupt(Ind1, False) : 0.6
A3: hasCitizenship(Ind1, UK) : 0.4
A4: wasBankrupt(Ind1, T rue) : 0.5
As given, the ontology is inconsistent: the individual Ind1 is forced to belong
to both classes RiskyApplicant and ReliableApplicant, which are disjoint, and
the functional property wasBankrupt has two different values. If we choose to
remove the axioms with the lowest confidence values, it will require removing A3
and A4. However, inconsistency can also be repaired by removing a single state-
ment A2. The fact that A2 leads to the violation of two ontological constraints
should increase the likelihood it is wrong.

4.2 Inconsistency Detection

The task of the inconsistency detection step is to retrieve all minimal inconsistent
subontologies (MISO) of the ontology and combine them. As defined in [6], an
ontology O′ is a minimal inconsistent subontology of an ontology O, if O′ ⊆ O



and O′ is inconsistent and for all O′′ such that O′′ ⊂ O′ ⊆ O, O′′ is consistent.
OWL reasoner Pellet [7] is able to return the MISO for the first encountered
inconsistency in the ontology. To calculate all MISO O′

1, ..., O
′
n in the ontology

we employ Reiter’s hitting set tree algorithm [20]. After all conflict sets were
identified, the next step involves constructing belief networks from each set. If
for two subontologies O′

i ∩ O′
j 6= � then these two subontologies are replaced

with O′ = O′
i ∪O′

j .
For our illustrating example, the conflict detection algorithm is able to identify
two conflict sets in this ontology: the first, consisting of {T3, T4, A1, A2, A3}
(individual Ind1 belongs to two disjoint classes), and the second {T5, A2, A4}
(individual Ind1 has two instantiations of a functional property). The statement
A2 belongs to both sets and therefore the sets are merged.

4.3 Constructing Belief Networks

The networks for propagation of Dempster-Shafer belief functions (also called
valuation networks) were described in [21]. By definition the valuation network
is an undirected graph represented as a 5-tuple: {Ψ, {ΩX}X∈Ψ , {τ1, ..., τn}, ↓,⊗},
where Ψ is a set of variables, {ΩX}X∈Ψ is a collection of state spaces, {τ1, ..., τn}
is a collection of valuations (belief potentials of nodes), ↓ is a marginalization
operator and ⊗ is a combination operator. In our case Ψ consists of ABox asser-
tions, every {ΩX}X∈Ψ = {0; 1} and {τ1, ..., τn} are created using rules described
below. The operators are used for propagation of beliefs and are described in the
following subsections. The network contains two kinds of nodes: variable nodes
corresponding to explicit or inferred ABox assertions and valuation nodes repre-
senting TBox axioms. Variable nodes contain only one variable, while valuation
nodes contain several variables.
Translation of an inconsistent subontology into a belief propagation network is
performed using a set of rules (Table 1). Each rule translates a specific OWL-DL
construct into a set of network nodes and links between them. Rules 1 and 2
directly translate each ABox statement into a variable node. Other rules process
TBox axioms and create two kinds of nodes: one valuation node to represent the
TBox axiom and one or more variable nodes to represent inferred statements.
Such rules only fire if the network already contains variable nodes for ABox ax-
ioms, which are necessary to make the inference. For example, a rule processing
the class equivalence axiom (Rule 4) is interpreted as the following: “If there is
a node N1 representing the type assertion I ∈ X and an owl : equivalentClass
axiom X ≡ Y , then:

– Create a node N2 representing the assertion I ∈ Y ;
– Create a node N3 representing the axiom X v Y ;
– Create links between N1 and N3 and between N3 and N2.”

If a rule requires creating a node, which already exists in the network, then
the existing node is used.
Applying the rules described above to our illustrating example (rules 1, 2, 4, 5,
6, 9, 20) will result in the following network (Fig. 1).



Table 1. Belief network construction rules

N Pre-conditions Nodes to create Links to create

1 I ∈ X N1 : I ∈ X

2 R(I1, I2) N2 : R(I1, I2)

3 N1 : I ∈ X, X v Y N2 : I ∈ Y , N3 : X v Y (N1,N3),(N3,N2)

4 N1 : I ∈ X, X ≡ Y N2 : I ∈ Y , N3 : X v Y (N1,N3),(N3,N2)

5 N1 : I ∈ X, X v ¬Y N2 : I ∈ Y , N3 : X v ¬Y (N1,N3),(N3,N2)

6 N1 : I ∈ X, X u Y
N2 : I ∈ X u Y , N3 : X u Y , (N1,N3),(N4,N3),
N4 : I ∈ Y (N3,N2)

7 N1 : I ∈ X, X t Y
N2 : I ∈ X t Y , N3 : X t Y , (N1,N3),(N4,N3),
N4 : I ∈ Y (N3,N2)

8 N1 : I ∈ X, ¬X N2 : I ∈ ¬X, N3 : ¬X (N1,N3),(N3,N2)

9
> v≤ 1R, N1 : R(I, o1),

N3 : > v≤ 1R (N1,N3),(N2,N3)N2 : R(I, o2)

10
> v≤ 1R−, N1 : R(I2, I1), N3 : > v≤ 1R− (N1,N3),(N2,N3)
N2 : R(I3, I1)

11 R ≡ R−, N1 : R(I1, I2) N2 : R ≡ R−, N3 : R(I2, I1) (N1,N2),(N2,N3)

12 R ≡ Q, N1 : R(I1, I2) N2 : R ≡ Q,N3 : Q(I1, I2) (N1,N2),(N2,N3)

13 R v Q,N1 : R(I1, I2) N2 : R v Q, N3 : Q(I1, I2) (N1,N2),(N2,N3)

14 R ≡ Q−,N1 : R(I1, I2) N2 : R ≡ Q−, N3 : Q(I2, I1) (N1,N2),(N2,N3)

15
Trans(R), N1 : R(I1, I2), N3 : Trans(R), N4 : R(I1, I3)

(N1,N3),(N2,N3),
N2 : R(I2, I3) (N3,N4)

16
≤ 1.R, N1 : R(I1, o1), N3 :≤ 1.R, N4 : I ∈≤ 1.R

(N1,N3),(N2,N3),
N2 : R(I1, o2) (N3,N4)

17
≥ 1.R, N1 : R(I1, o1), N3 :≥ 1.R, N4 : I ∈≥ 1.R (N1,N3),(N2,N3)N2 : R(I1, o2)

18
= 1.R, N1 : R(I1, o1),

N3 : I ∈= 1.R (N1,N3),(N2,N3)N2 : R(I1, o2)

19
∀R.X, N1 : R(I1, I2), N3 : ∀R.X, N4 : I1 ∈ ∀R.X

(N1,N3),(N2,N3),
N2 : I2 ∈ X (N3,N4)

20
∃R.X, N1 : R(I1, I2),

N3 : ∃R.X, N4 : I1 ∈ ∃R.X
(N1,N3),(N2,N3),

N2 : I2 ∈ X (N3,N4)

21
∃R.> v X, N1 : R(I1, I2),

N3 : ∃R.> v X (N1,N3),(N2,N3)N2 : I1 ∈ X

22
> v ∀R.X, N1 : R(I1, I2), N3 : > v ∀R.X (N1,N3),(N2,N3)N2 : I2 ∈ X



Fig. 1. Belief network example (Exp1 = ∃wasBankrupt.Falseu∃hasCitizenship.UK,
Exp2 = ∃hasCitizenship.UK, Exp3 = ∃wasBankrupt.False)

4.4 Assigning Mass Distributions

After the nodes were combined into the network, the next step is to assign the
mass distribution functions to the nodes. There are two kinds of variable nodes:
(i) nodes representing statements supported by the evidence and (ii) nodes rep-
resenting inferred statements. Initial mass distribution for the nodes of the first
type is assigned based on their extracted confidence. If a statement was ex-
tracted with a confidence degree c, it is assigned the following mass distribution:
m(True) = c,m(True;False) = 1− c. It is possible that the same statement is
extracted from several sources. In this case, multiple pieces of evidence have to
be combined using Dempster’s rule of combination.
Nodes created artificially during network construction are only used for propa-
gation of beliefs from their neighbours and do not contain their own mass as-
signment. Valuation nodes specify the TBox axioms and are used to propagate
beliefs through the network. For the crisp OWL ontologies only mass assign-
ments of 0 and 1 are possible. The principle for assigning masses is to assign
the mass of 1 to the set of all combinations of variable sets allowed by the cor-
responding axiom. Table 2 shows the mass assignment functions for OWL-DL
T-Box axioms 1.

In our example, we assign distributions based on the extractor’s confidence
values to the variable nodes representing extracted statements: A1:(m(1)=0.7,
m({0;1})=0.3), A2: (m(1)=0.6, m({0;1})=0.4), A3: (m(1)=0.4, m({0;1})=0.6),

1 For nodes allowing multiple operands (e.g., intersection or cardinality) only the case
of two operands is given. If the node allows more than two children, then number
of variables and the distribution function is adjusted to represent the restriction
correctly



Table 2. Belief distribution functions for valuation nodes

N Node type Variables Mass distribution

1 X v Y I ∈ X, I ∈ Y m({0;0}, {0;1}, {1;1})=1

2 X ≡ Y I ∈ X, I ∈ Y m({0;0},{1;1})=1

3 X v ¬Y I ∈ X, I ∈ Y m({0;0},{0;1},{1;0})=1

4 X u Y I ∈ X, I ∈ Y , I ∈ X u Y m({0;0;0},{0;1;0},{1;0;0},{1;1;1})=1

5 X t Y I ∈ X, I ∈ Y , I ∈ X t Y m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1

6 ¬X I ∈ X, I ∈ ¬X m({0;1},{1;0})=1

7 > v≤ 1R R(I, o1), R(I, o2) m({0;0},{0;1},{1;0})=1

8 > v≤ 1R− R(I2, I1), R(I3, I1) m({0;0},{0;1},{1;0})=1

9 R ≡ R− R(I1, I2), R(I2, I1) m({0;0},{1;1})=1

10 R ≡ Q R(I1, I2), Q(I1, I2) m({0;0},{1;1})=1

11 R v Q R(I1, I2), Q(I1, I2) m({0;0},{0;1},{1;1})=1

12 R ≡ Q− R(I1, I2), Q(I2, I1) m({0;0},{1;1})=1

13 Trans(R) R(I1, I2), R(I2, I3), R(I1, I3)
m({0;0;0},{0;0;1},{0;1;0},{0;1;1},
{1;0;0},{1;0;1},{1;1;1})=1

14 ≤ 1.R R(I1, o1), R(I1, o2), I1 ∈≤ 1.R m({0;0;1},{0;1;1},{1;0;1},{1;1;0})=1

15 ≥ 1.R R(I1, o1), R(I1, o2), I1 ∈≥ 1.R m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1

16 = 1.R R(I1, o1), R(I1, o2), I1 ∈= 1.R m({0;0;0},{0;1;1},{1;0;1},{1;1;0})=1

17 ∀R.X R(I1, I2), I2 ∈ X, I1 ∈ ∀R.X m({0;0;1},{0;1;1},{1;0;0},{1;1;1})=1

18 ∃R.X R(I1, I2), I2 ∈ X, I1 ∈ ∃R.X m({0;0;1},{0;1;1},{1;0;0},{1;1;1})=1

19 ∃R.> v X R(I1, I2), I1 ∈ X m({0;0}, {0;1}, {1;1})=1

20 > v ∀R.X R(I1, I2), I2 ∈ X m({0;0}, {0;1}, {1;1})=1

A4: (m(1)=0.5, m({0;1})=0.5). The valuation nodes obtain their distributions
according to the rules specified in the Table 2: T3 (rule 3), T4 (rules 2, 4, 18)
and T5 (rule 7).

4.5 Belief Propagation

The axioms for belief propagation were formulated in [22]. The basic operators
for belief potentials are marginalization ↓ and combination ⊗. Marginalization
takes a mass distribution function m on domain D and produces a new mass
distribution on domain C ⊆ D.

m↓C(X) =
∑

Y ↓C=X

m(Y )

For instance, if we have the function m defined on domain {x, y} as m({0; 0}) =
0.2, m({0; 1}) = 0.35, m({1; 0}) = 0.3, m({1; 1}) = 0.15 and we want to find
a marginalization on domain {y}, we will get m(0) = 0.2 + 0.3 = 0.5 and
m(1) = 0.35 + 0.15 = 0.5. The combination operator is represented by the
Dempster’s rule of combination:

m1 ⊗m2(X) =

∑
X1∩X2=X m1(X1)m2(X2)

1−
∑

X1∩X2=�m1(X1)m2(X2)



Belief propagation is performed by passing messages between nodes according
to the following rules:

1. Each node sends a message to its inward neighbour (towards the root of the
tree). If µA→B is a message from A to B, N(A) is a set of neigbours of A
and the potential of A is mA, then the message is specified as a combination
of messages from all neighbours except B and the potential of A:

µA→B = (⊗{µX→A|X ∈ (N(A)− {B})⊗mA})↓A∩B

2. After a node A has received a message from all its neighbors, it combines all
messages with its own potential and reports the result as its marginal.

As the message-passing algorithm assumes that the graph is a tree, it is neces-
sary to eliminate loops. All valuation nodes constituting the loop are replaced
by a single node with the mass distribution equal to the combination of mass
distributions of its constituents. The marginals obtained after propagation for
the nodes corresponding to initial ABox assertions will reflect updated mass dis-
tributions. After the propagation we can remove the statement with the lowest
plausibility from each of the MISO found at the diagnosis stage.
Calculating the beliefs for our example gives the following Dempster-Shafer plau-
sibility values for ABox statements: Pl(A1)=0.94, Pl(A2)=0.58, Pl(A3)=0.8,
Pl(A4)=0.65. In order to make the ontology consistent it is sufficient to re-
move from both conflict sets an axiom with the lowest plausibility value (A2).
In this example, we can see how the results using Dempster-Shafer belief prop-
agation differ from the Bayesian interpretation. Bayesian probabilities, in this
case, are calculated in the same way as Dempster-Shafer support values. If we
use confidence values as probabilities and propagate them using the same valu-
ation network we will obtain the results: P(A1)=0.66, P(A2)=0.35, P(A3)=0.32
and P(A4)=0.33. In this scenario, we would remove A3 and A4 because of the
negative belief bias. Also we can see that all three statements A2, A3 and A4
will be considered wrong in such a scenario (resulting probability is less than
0.5). The Dempster-Shafer approach provides more flexibility by making it pos-
sible to reason about both support (“harsh” queries) and plausibility (“lenient”
queries).

5 Conclusion and Future Work

In this paper, we described how the Dempster-Shafer theory of evidence can be
used for dealing with ABox-level inconsistencies produced by inaccurate infor-
mation extraction. It would be interesting to investigate if the capabilities of
the Dempster-Shafer uncertainty representation (e.g., explicit representation of
ignorance) can be utilized for knowledge modelling at the TBox level. In [23] it
was shown that the Dempster-Shafer approach may lead to problems when it
is used to represent uncertainty of inferencing rules (i.e., TBox-level) and not
only of pieces of evidence (ABox assertions). These problems occur if the ontol-
ogy contains contradictory pieces of knowledge, and are caused by the fact that



the Dempster-Shafer approach does not distinguish pieces of evidence regard-
ing specific individuals from generic rules applicable to all individuals. It will
be interesting to investigate if these problems can be avoided when modelling
description logic axioms.
The algorithm described in the paper focuses on only one aspect of provenance
information: confidence values assigned by extraction algorithms. However, such
an approach has its limitations: for instance, we know that rule-based extractors
tend to repeat their errors when applied to several documents. Such reoccurring
errors lead to erroneous inconsistency resolution if interpreted as independent
pieces of evidence. In order to improve the quality of the fusion procedure, it
would be useful to take into account other kinds of provenance information,
in particular, the reliability of the extraction algorithm itself, the reliability of
sources from which statements were extracted, and the timestamp reflecting
when each statement was produced. This we consider our primary direction for
the future work.
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