Extending Fuzzy Description Logics with a Possibilistic Layer

Fernando Bobillo

Joint research with Miguel Delgado and Juan Gómez-Romero

Department of Computer Science and Artificial Intelligence University of Granada, Spain

URSW 2007 Busan (South Korea), November 2007

- Classical ontologies are not appropriate to deal with imprecise, vague and uncertain knowledge.
 - Examples: Vague concepts, imprecision in the knowledge, uncertainty in integration or merging of ontologies ...
- Fuzzy and possibilistic logics are orthogonal.
 - Fuzzy logic: degrees of truth, e.g. the bottle is half full
 - **Possibilistic logic**: degrees of certainty, e.g. it is possible to degree 0.5 that the bottle is full.
- We propose to build a **possibilistic layer** (uncertain knowledge) on top of a **fuzzy ontology** (vague/imprecise knowledge).
 - Axioms are annotated with possibility and necessity degrees.
 - We reduce it to a possibilistic ontology, which makes possible to use classical reasoners.

- A possibilistic fuzzy knowledge base is a fuzzy KB where each fuzzy axiom *τ* is equipped with:
 - A possibility degree $(\tau, \Pi \alpha)$.
 - α expresses to what extent τ is possible, or
 - A necessity degree $(\tau, N \alpha)$

• α expresses to what extent τ is necessary true.

• If no degree is specified, N 1 es assumed.

Semantics

- Let \Im be the set of all (fuzzy) interpretations.
- A possibilistic interpretation is a mapping π : ℑ → [0, 1] such that π(I) = 1 for some I ∈ ℑ.
 - $\pi(\mathcal{I})$ represents the degree to which the world \mathcal{I} is possible.
 - \mathcal{I} is impossible if $\pi(\mathcal{I}) = 0$.
 - \mathcal{I} is fully possible if $\pi(\mathcal{I}) = 1$.
- The **possibility** of an axiom τ is defined as:

$$\textit{Poss}(\tau) = \sup\{\pi(\mathcal{I}) \mid \mathcal{I} \in \mathfrak{I}, \mathcal{I} \models \tau\}$$

The necessity is defined as:

$$\textit{Nec}(\tau) = 1 - \textit{Poss}(\neg \tau)$$

- π satisfies $(\tau, \Pi\gamma)$, denoted $\pi \models (\tau, \Pi\gamma)$, $\pi \models (\tau, \Pi\gamma)$ iff: $Poss(\tau) \ge \gamma$
- π satisfies $(\tau, N \gamma)$, denoted $\pi \models (\tau, N \gamma)$, iff: $Nec(\tau) \ge \gamma$

Reasoning

- B. Hollunder showed that reasoning within a possibilistic DL can be reduced to reasoning within a classical DL.
- We reduce our possibilistic fuzzy DL to a possibilistic DL.
 - A fuzzy KB *fK* can be reduced to a crisp KB $\mathcal{K}(fK)$ and every axiom $\tau \in fK$ is reduced to $\mathcal{K}(\tau)$.
 - Adding degrees of certainty to *fK* formulae is equivalent to adding degrees of certainty to their reductions.
 - For every axiom $(\tau, \Pi \gamma) \in pfK$:

$$Poss(\tau) \ge \gamma \text{ iff } Poss(\mathcal{K}(\tau)) \ge \gamma$$

• For every axiom $(\tau, \Pi \gamma) \in pfK$:

 $Nec(\tau) \geq \gamma$ iff $Nec(\mathcal{K}(\tau)) \geq \gamma$

• We also need to consider the additional axioms which are created during the reduction of the fuzzy ontology.

• □ ▶ • □ ▶ • □ ▶

- The axiom (⟨tom : High ≥ 0.5⟩, N 0.2) means that it is possible with degree 0.2 that tom can be considered a High person with (at least) degree 0.5.
- It is reduced into (⟨tom : High_{≥0.5}⟩, N 0.2), meaning that it is possible with degree 0.2 that tom belongs to the crisp set High_{≥0.5}.
- The final crisp KB would also need some additional axioms (consequence of the reduction of the fuzzy KB):

 $\textit{High}_{\geq 0.5} \sqsubseteq \textit{High}_{>0.5} \sqsubseteq \textit{High}_{\geq 0.5}, \textit{High}_{\geq 1} \sqsubseteq \textit{High}_{>0.5}$

< 同 > < ∃ >

- F. Bobillo et al. reduces a fuzzy KB to a crisp KB and reasoning is performed by computing one consistency test on the crisp KB.
 - Our case is more difficult and needs several entailment tests.

 Moreover, how to represent the possibilistic DL using a classical DL remains an open issue.

Thank you very much for your attention

F. Bobillo (DECSAI, UGR)

Fuzzy DLs with a Possibilistic Layer

< A >