Optimizing the Crisp Representation of the Fuzzy Description Logic SROIQ

Fernando Bobillo

Joint research with Miguel Delgado and Juan Gómez-Romero

Department of Computer Science and Artificial Intelligence University of Granada, Spain

URSW 2007

Busan (South Korea), November 2007

- Motivation

Crisp Representations for Fuzzy DLs

- Classical ontologies are not appropriate for imprecise and vague knowledge. A solution are fuzzy Description Logics (DLs).
- Fuzzy DLs require that new languages need to be used, and hence to adapt the available resources.
 - Specially difficult with reasoners: significant gap between the design of a decision procedure and a practical implementation.
- Alternative: To represent fuzzy DLs using crisp DLs and to reduce reasoning within fuzzy DLs to reasoning within crisp ones.
- Advantages:
 - No need to agree a new standard fuzzy language.
 - Use of standard languages and reuse of available resources.
 - Use of existing crisp reasoners.
 - This will support early reasoning in future fuzzy languages.
- An immediate practical application of fuzzy ontologies is feasible because it relies on existing valid languages and tools.

Our contributions

- A crisp representation of fuzzy SROIQ.
 - G. Stoilos et al. proposed fuzzy SROIQ but only provided reasoning for a fragment of it, missing:
 - Qualified cardinality restrictions e.g. ≥ 2hasSon.Male,
 - Negated local reflexivity concepts e.g. ¬∃likes.Self,
 - Negative role assertions e.g. (fernando, juan) : ¬hasFriend,
- Fuzzy Concept and Role Inclusion Axioms (GCIs and RIAs) can be true to some degree using Gödel implication in the semantics.
 - First work supporting reasoning with fuzzy RIAs.
- The reduction is optimized in several ways:
 - We reduce the number of new crisp atomic elements (which are needed to represent the elements in the fuzzy KB).
 - We reduce the new axioms needed to preserve their semantics.
 - We show how to optimize some important GCIs.
- Implementation of Delorean, the first reasoner supporting a fuzzy extension of \mathcal{SHOIN} (and hence OWL DL).

- Fuzzy SROIQ

Complex fuzzy concept and roles

Constructor	Syntax	Semantics
(top concept)	Т	1
(bottom concept)		0
(atomic concept)	A	$A^{\mathcal{I}}(a)$
(concept conjunction)	$C\sqcap D$	$C^{\mathcal{I}}(a)\otimes D^{\mathcal{I}}(a)$
(concept disjunction)	$C \sqcup D$	$C^{\mathcal{I}}(a) \oplus D^{\mathcal{I}}(a)$
(concept negation)	¬ <i>C</i>	$\ominus C^{\mathcal{I}}(a)$
(universal quantification)	∀R.C	$\inf_{b \in \Lambda^{\mathcal{I}}} \{ R^{\mathcal{I}}(a,b) \to C^{\mathcal{I}}(b) \}$
(existential quantification)	∃R.C	$\sup_{b \in \Delta^{\mathcal{I}}} \{ R^{\mathcal{I}}(a,b) \otimes C^{\mathcal{I}}(b) \}$
(fuzzy nominals)	$\bigcup_{i=1}^m \{\alpha_i/o_i\}$	$\sup_{i \mid a \in \{o_i^{\mathcal{I}}\}} \alpha_i$
(at-least restriction)	≥ n S.C	$\sup_{b_1,\ldots,b_m \in \Delta^{\mathcal{I}}} [(\otimes_{i=1}^m \{S^{\mathcal{I}}(a,b_i) \otimes C^{\mathcal{I}}(b_i)\}) \otimes (\otimes_{j < k} \{b_j \neq b_k\})]$
(at-most restriction)	≤ n S.C	$\inf_{b_1,\ldots,b_{n+1}\in\Delta^{\mathcal{I}}}[(\otimes_{i=1}^{n+1}\{S^{\mathcal{I}}(a,b_i)\otimes C^{\mathcal{I}}(b_i)\})\to (\oplus_{j< k}\{b_j=b_k\})]$
(local reflexivity)	∃S.Self	$S^{\mathcal{I}}(a,a)$
(atomic role)	R_A	$R_A^T(a,b)$
(inverse role)	R [−]	$R^{\mathcal{I}}(b,a)$
(universal role)	U	1

Fuzzy axioms in the ABox, TBox and RBox

Axiom Syntax		Semantics			
(concept ass.)	$\langle a : C \bowtie \alpha \rangle$	$C^{\mathcal{I}}(a^{\mathcal{I}})\bowtie \alpha$			
(role ass.)	$\langle (a,b):R\bowtie\alpha\rangle$	$R^{\mathcal{I}}(a^{\mathcal{I}},b^{\mathcal{I}})\bowtie \alpha$			
(inequality ass.)	$\langle a \neq b \rangle$	$a^{\mathcal{I}} eq b^{\mathcal{I}}$			
(equality ass.)	$\langle a=b\rangle$	$a^{\mathcal{I}} = b^{\mathcal{I}}$			
(GCI)	$\langle C \sqsubseteq D \rhd \alpha \rangle$	$\inf_{\mathbf{a}\in\Delta^{\mathcal{I}}}\left\{\mathcal{C}^{\mathcal{I}}(\mathbf{a})\rightarrow\mathcal{D}^{\mathcal{I}}(\mathbf{a})\right\}\rhd\alpha$			
(RIA)	$\langle R_1 R_2 \dots R_n \sqsubseteq R' \rhd \alpha \rangle$	$\sup\nolimits_{b_1b_{n+1}\in\Delta^{\mathcal{I}}}\otimes[R_1^{\mathcal{I}}(b_1,b_2),,R_n^{\mathcal{I}}(b_n,b_{n+1})]\to R^{\mathcal{I}}(b_1,b_{n+1})\rhd\alpha$			
(transitive)	trans(R)	$\forall a,b \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(a,b) \geq \sup_{c \in \Delta^{\mathcal{I}}} R^{\mathcal{I}}(a,c) \otimes R^{\mathcal{I}}(c,b)$			
(disjoint)	$dis(S_1, S_2)$	$\forall a, b \in \Delta^{\mathcal{I}}, S_1^{\mathcal{I}}(a, b) \otimes S_2^{\mathcal{I}}(a, b) = 0$			
(reflexive)	ref(R)	$\forall a \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(a, a) = 1$			
(irreflexive)	irr(S)	$\forall a \in \Delta^{\mathcal{I}}, S^{\mathcal{I}}(a, a) = 0$			
(symmetric)	sym(R)	$\forall a, b \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(a, b) = R^{\mathcal{I}}(b, a)$			
(asymmetric)	asy(S)	$\forall a,b \in \Delta^{\mathcal{I}}, \text{ if } S^{\mathcal{I}}(a,b) > 0 \text{ then } S^{\mathcal{I}}(b,a) = 0$			

Fuzzy operators

- We consider $f_{KD}SROIQ$:
 - Minimum t-norm, $\alpha \otimes \beta = \min\{\alpha, \beta\}$
 - Maximum t-conorm, $\alpha \oplus \beta = \max\{\alpha, \beta\}$
 - Łukasiewicz negation, $\ominus \alpha = 1 \alpha$
 - KD implication except in GCIs and RIAs: $\alpha \rightarrow \beta = \max\{1 \alpha, \beta\}$
 - Gödel implication in GCIs and RIAs: $\alpha \to \beta = \left\{ \begin{array}{ll} \mathbf{1} & \alpha \le \beta \\ \beta & \alpha > \beta \end{array} \right.$
- These fuzzy operators make possible the reduction to a crisp KB (other fuzzy operators are not suitable in principle).

Fuzzy GCIs and RIAs

 The most common semantics for GCIs and RIAs, based on Zadeh's set inclusion, forces them to be either true or false:

$$C \sqsubseteq D \text{ iff } \forall x \in \Delta^{\mathcal{I}}, C^{\mathcal{I}}(x) \leq D^{\mathcal{I}}(x)$$

- The use of Kleene-Dienes implication in the semantics of GCIs and RIAs brings about two counter-intuitive effects:
 - In general concepts (and roles) do not fully subsume themselves.
 - $\langle C \sqsubset D > 1 \rangle$ force some fuzzy concepts and roles to be interpreted as crisp.
- Gödel implication:
 - Solves these problems,
 - It is suitable for a classical representation.
 - For GCIs of the form $\langle C \sqsubset D > 1 \rangle$, it is equivalent to consider Zadeh's set inclusion.

- A Crisp Representation for Fuzzy \mathcal{SROIQ}

Idea of the reduction

- Compute the set of degrees of truth which must be considered.
 - Degrees x in the fuzzy KB and their complementaries 1 x.
- ② For each fuzzy atomic concept and role, add **new crisp elements** (α -cut and strict α -cut.)
- Add new axioms to preserve their semantics.
- Reduce fuzzy axioms using the new crisp elements.
 - The size of the crisp KB is quadratic.
 - The size is linear under a fixed set of degrees.
- The reduction preserves reasoning.
 - Consistency of the fuzzy KB and the crisp KB are equivalent.
- The reduction can be reused when adding new axioms.
 - If the new axiom do not introduce new vocabulary nor degrees.

Example of reduction

h is a hotel at a German-speaking country with at-least degree 0.5. $KB = \{ \langle h : Hotel \, | \, \forall isIn. \{ (ge, 1), (au, 1), (sw, 0.67) \} > 0.5 \rangle \}$

- **Degrees of truth** to be considered: $\{0, 0.5, 1\}$
- 2 New crisp elements: $Hotel_{>0.5}, Hotel_{\geq 0.5}, Hotel_{\geq 1}, isIn_{>0}, isIn_{\geq 0.5}, isIn_{>0.5}, isIn_{\geq 1}$
- ③ New axioms: $Hotel_{\geq 0.25} \sqsubseteq Hotel_{\geq 0.25}, \dots$ $Isln_{\geq 0.25} \sqsubseteq Isln_{\geq 0.25}, \dots$
- **Reduction** of every axiom in the KB: $h: \rho(Hotel, > 0.5) \sqcap \forall \rho(isln, \geq 0.5).\rho(\{(ge, 1), (au, 1), (sw, 0.67)\}, > 0.5) = h: Hotel_{>0.5} \sqcap \forall isln_{\geq 0.5}.\{ge, au, sw\}$

Example: Reduction of a fuzzy GCI

- Consider the GCI $\langle C \sqsubset D > \alpha \rangle$.
- If it is satisfied, $\inf_{a \in \Lambda^{\mathcal{I}}} C^{\mathcal{I}}(a) \Rightarrow D^{\mathcal{I}}(a) \geq \alpha$.
- An arbitrary a must satisfy that $C^{\mathcal{I}}(a) \Rightarrow D^{\mathcal{I}}(a) \geq \alpha$.
- From the semantics of Gödel implication, this is true if:
 - $C^{\mathcal{I}}(a) < D^{\mathcal{I}}(a)$, or
 - $D^{\mathcal{I}}(a) > \alpha$.
- Roughly, for very γ such that $\gamma < \alpha$, $C^{\mathcal{I}}(a) \rhd \gamma$ implies $D^{\mathcal{I}}(a) \rhd \gamma$.

$$\rho(C, \triangleright \gamma) \sqsubseteq \rho(D, \triangleright \gamma)$$

• Additionally, $C^{\mathcal{I}}(a) \geq \alpha$ implies $D^{\mathcal{I}}(a) \geq \alpha$.

$$\rho(C, > \alpha) \sqsubseteq \rho(D, > \alpha)$$

Optimizing the number of new elements and axioms

- Roughly, for each $\alpha, \beta \in N^{fK}$ we create:
 - Two new crisp atomic concepts $A_{\geq \alpha}$, $A_{>\beta}$.
 - Two new crisp atomic roles $R_{\geq \alpha}$, $\bar{R}_{>\beta}$.
- Previous works use two more atomic concepts $A_{\leq \beta}, A_{<\alpha}$, but:
 - We use $\neg A_{>\gamma_k}$ rather than $A_{\leq \gamma_k}$.
 - We use $\neg A_{\geq \gamma_k}$ instead of $A_{<\gamma_k}$.
- We also need some new axioms to preserve their semantics:

$$A_{\geq \gamma_{i+1}} \sqsubseteq A_{>\gamma_i} \quad A_{>\gamma_j} \sqsubseteq A_{\geq \gamma_j}$$

 $R_{\geq \gamma_{i+1}} \sqsubseteq R_{>\gamma_i} \quad R_{>\gamma_i} \sqsubseteq R_{\geq \gamma_i}$

 Previous works also use some additional axioms, which now are superfluous (they follow immediately from the semantics):

$$\begin{array}{ll} A_{<\gamma_k} \sqsubseteq A_{\leq \gamma_k} & A_{\leq \gamma_i} \sqsubseteq A_{<\gamma_{i+1}} \\ A_{\geq \gamma_k} \sqcap A_{<\gamma_k} \sqsubseteq \bot & A_{>\gamma_i} \sqcap A_{\leq \gamma_i} \sqsubseteq \bot \\ \top \sqsubseteq A_{\geq \gamma_k} \sqcup A_{<\gamma_k} & \top \sqsubseteq A_{>\gamma_i} \sqcup A_{\leq \gamma_i} \end{array}$$

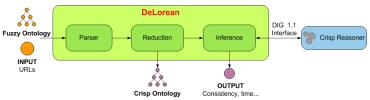
Optimizing some GCIs

- $\langle C \sqsubseteq \top \bowtie \gamma \rangle$ and $\langle \bot \sqsubseteq D \bowtie \gamma \rangle$ are tautologies.
 - They are unnecessary in the resulting KB.
- $\kappa(\top \sqsubseteq D \bowtie \gamma) = \top \sqsubseteq \rho(D, \bowtie \gamma).$
 - It appears in role range axioms, range(R) = C iff $\top \sqsubseteq \forall R.C \ge 1$.
- $\kappa(C \sqsubseteq \bot \bowtie \gamma) = \rho(C, > 0) \sqsubseteq \bot$.
 - It appears in disjointness, disjoint(C, D) = C iff $C \sqcap D \sqsubseteq \bot \ge 1$.
- If the resulting TBox contains $A \sqsubseteq B$, $A \sqsubseteq C$ and $B \sqsubseteq C$, then $A \sqsubseteq C$ is unnecessary.
 - Example: $\kappa(C \sqsubseteq \{1/o_1, 0.5/o_2\}) = \{C_{>0} \sqsubseteq \{o_1, o_2\}, C_{\geq 0.5} \sqsubseteq \{o_1, o_2\}, C_{>0.5} \sqsubseteq \{o_1\}, C_{\geq 1} \sqsubseteq \{o_1\}\}$ can be optimized to: $\{C_{>0} \sqsubseteq \{o_1, o_2\}, C_{>0.5} \sqsubseteq \{o_1\}\}$.

- Implementation

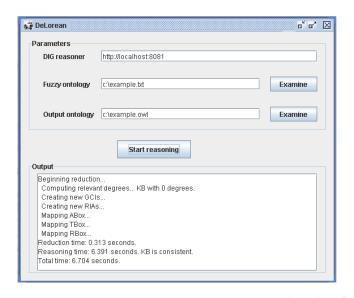
Implementation: DELOREAN

- DELOREAN = DEscription LOgic REasoner with vAgueNess.
- Using Java, Jena API, JavaCC and DIG 1.1 interface.
- Architecture:



- The Parser reads an input file with a fuzzy ontology.
- Reduction module implements the reduction, builds a Jena model, and saves it as an OWL file with an equivalent crisp ontology.
- **Inference** module perform a consistency test, using any crisp reasoner through the DIG interface.
- User interface communicates with the user.
- Currently the logic supported is $f_{KD}SHOIN$ (OWL DL), since DIG interface does not yet support full SROIQ.

DELOREAN User Interface



Experimentation

- Experiments have shown that the results of the reasoning tasks over the crisp ontology were the expected.
- We extended the axioms of *Koala*, a small $\mathcal{ALCON}(\mathcal{D})$ ontology, with random degrees and used Pellet reasoner through DIG.
- Time of a classification test over the resulting crisp ontology:

Number of degrees	crisp	3	5	7	11
Reduction time	-	1.18	6.28	23.5	148.25
Reasoning time	0.56	0.98	1.343	2.88	6.47

- The reduction time is currently high, so the implementation should be optimized. Anyway, the reduction can be reused and hence needs to be computed just once (possibly off-line).
- The reasoning time is reasonable at least for small ontologies and using a limited number of degrees of truth.

- Conclusions and Future Work

Conclusions and Future Work

Conclusions:

- We have shown how to reduce fuzzy SROIQ into SROIQ.
- Crisp representations can be optimized in several ways.
- Restricting the number of truth degrees is important to control the complexity of the reduction.
- DELOREAN is the first reasoner supporting fuzzy \mathcal{SHOIN} (and hence fuzzy OWL DL).

• Future work:

- Compare DELOREAN with other fuzzy DL reasoners.
- Extend the reasoner to fuzzy SROIQ (and hence OWL 1.1) as soon as DIG 2.0 interface is available.
- To allow the definition of crisp concepts and roles.
- To allow the use of two implications in the semantics of GCIs and RIAs: Gödel and Kleene-Dienes.

Questions?

Thank you very much for your attention

