

# Life-Cycle and Mission-Driven Acquisition Valuation Methodology

#### Tod Levitt George Mason University C4I & Cyber Center



# Topics

- DoD acquisition: beyond the horse blanket
  - Acquisition key elements technical approach
  - Valuation first steps: WFPAC prototype
  - Plug-n-play portfolio first steps: VIR prototype
  - Acquisition valuation R&D



#### **DoD Acquisition Horse Blanket**



#### INTEGRATED DEFENSE AT&L LIFE CYCLE MANAGEMENT CHART

https://dap.dau.mil 5/26/2010



Initial

Capabilities Document\* Materiel

Development Decision

Materiel

Solution Analysis Phase

### DoD Acquisition On DoDI 5000.02



"Testing should normally include user feedback to support design and operational use improvements."

".... post-deployment assessment will be conducted.."



www.acq.osd.mil/fo/docs/DSD%205000.02\_Memo+Doc.pdf



#### **Acquisition Enterprise Issues**

- No structure for multiple, required feedback loops
  - Ad hoc and random methods for use experience capture
- Limited and unquantified information horizons at every step
  - Don't know what we don't know; redundancy is inherent in process
- Fails to aggregate and fuse laboratory, simulation and field test results and assessments
- Focused at big-ticket item acquisition; no formal methods for addressing "small r" requirements
- Does not address expected explosion in plug-n-play systems and components
- No scalable (down, as well as up) methodology for portfolio analysis
  - Portfolios developed by BOGSAT
- Need intelligent methods for projecting pop-up and urgent acquisition needs and integration into portfolio decisions



# Topics

- DoD acquisition: beyond the horse blanket
- Acquisition key elements technical approach
  - Valuation first steps: WFPAC prototype
  - Plug-n-play portfolio first steps: VIR prototype
  - Acquisition valuation R&D



# **Objectives**

- Develop a scientifically sound computational methodology for decision support at all phases of the acquisition process
- Maximize value/time/cost delivered to the warfighter
- Assure the methodology can be applied across the military value-chain enterprise and accounts for entire life-cycle of assets
- Incorporate laboratory, simulation and field test results and assessments
- Develop a prototype acquisition valuation system for proof of concept



#### Life-Cycle & Value-Driven Acquisition



- Acquisition should account for entire equipment life-cycle shown above
- Driven by maximizing the value per time per cost delivered to the warfighter
- Responsive to current and future missions and corresponding commanders' priorities
- Scientifically well-founded methodology incorporating all relevant data
  - From R&D through development, allocation and maintenance
  - Including laboratory and field test and evaluation
  - Operational assessments and requests for enhancements
- Account for uncertainties including possible future conflicts and new technology developments
- Adaptable and robust to uncertainties in current and future operations and in current and future technology developments
- Optimizes trade-offs between competing alternatives



### **Acquisition Valuation**

- Value analysis begins with the end goal value to the warfighter – and works backwards to acquisition
- Outcomes are characterized by Measures of Effectiveness (MOEs)
- Valuation of MOEs depends on Measures of Performance (MOPs)
- MOPs measure a system's capabilities relative to its intended warfighting application, including factors such as frequency of maintenance and life-cycle cost



#### Valuing Acquisitions: MOEs

#### Use MOEs

- Operation Success
- Mission Success
- Effective Engagement Choices
- Effective Engagement Methods
- Operate Inside Opposition's Decision Cycle
- Situation Awareness Completeness
- Maintain Force Capability
- Effective C2
- Effective Force Application
- Effective Engagement ISR
- Effective Targeting

#### Provide MOEs

- Materials Availability
- Effective Allocation
- Effective Maintenance

#### **Acquire MOEs**

- Maximize Value to Warfighter Per Cost
- Minimize Total Cost
- Fill Capability Gaps



# **Portfolio Anytime Analysis**

- Develop a portfolio valuation objective function based on mission priorities and MOE/MOP estimates
  - Scientific foundation is multi-attribute utility theory (MAU)
- Concurrently elicit subjective priorities over current and future missions as a function of time
  - Deductive reasoning rules used to support smart auto-fill
  - Can be done at various levels of abstraction
- Concurrently, for each potential acquisition, estimate or develop probabilistic estimates of MOEs/MOPs for current and future conflicts and missions
  - Fuse available laboratory, simulation and field test results
- Perform anytime optimization to compute acquisition portfolio that maximizes objective function



# Topics

- DoD acquisition: beyond the horse blanket
- Acquisition key elements technical approach
- Valuation first steps: WFPAC prototype
  - Plug-n-play portfolio first steps: VIR prototype
  - Acquisition valuation R&D



## WFPAC Methodology



- Decision-theoretic methodology for valuation of the Wide Area Focal Plane Array Camera (WFPAC) in the context of small-unit Persistent ISR (PISR) support
- Marshal MOPs from asset purpose and requirements
- Determine MOEs for the relevant asset classes
- Use SME elicitation to weight MOPs value to MOEs
- Determine MOPs actual numbers for WFPAC from laboratory and field tests
- Roll-up the MOPs to the MOEs, then roll up the MOEs to determine the asset valuation





## **MOE/MOPs Hierarchy (4)**







#### **MOE/MOPs Valuation Roll-up**



|        | A                               | В          | С      | D                                                                     | Е                                                                                                            | F                             | G     |              |
|--------|---------------------------------|------------|--------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------|-------|--------------|
| 1      |                                 |            |        | Color coding indicates<br>MOP to be filled in for<br>option valuation | Test Step in WFPAC<br>Full System<br>Integration Test<br>Results 14 Mar 2012<br>from which MOP is<br>derived | Change since previous<br>test |       |              |
| 2      |                                 |            |        | МОР                                                                   | Test<br>Reference                                                                                            |                               | MOE   |              |
| 3<br>4 | Small Unit Mission<br>Success   |            |        |                                                                       |                                                                                                              |                               | 70%   | =C6*G6+C7*G7 |
| 5      | Attribute                       | Importance | Weight |                                                                       |                                                                                                              |                               |       |              |
| 6      | Effective Engagement Choices    | 90         | 0.47   |                                                                       |                                                                                                              |                               | 0.731 |              |
| 7      | Effective Engagement<br>Methods | 100        | 0.53   |                                                                       |                                                                                                              |                               | 0.677 |              |
|        |                                 |            |        |                                                                       |                                                                                                              |                               |       |              |

Levitt, T.S., "Persistent ISR Valuation Framework: Modeling Technical Approach", George Mason University C4I Center Technical Report, 18 May 2012: from p. 12



# Topics

- DoD acquisition: beyond the horse blanket
- Acquisition key elements technical approach
- Valuation first steps: WFPAC prototype
- Plug-n-play portfolio first steps: VIR prototype
  - Acquisition valuation R&D



# **VIR Objectives**

- Develop a real-time method for allocating netcentric plug-and-play tactical collection assets
  - Adapt and optimize for missions
  - Account for evolution of tactical red and blue situation
- Provide a smart-push of information to the warfighter
  - Identify mission and context-specific conditions of interest that should generate alerts
  - Provide semi-automation to enable ISR asset force multiplication effect
- Make the methodology consistent across the military value-chain enterprise
  - Support acquisition, deployment and operation with a uniform and scientifically sound technical approach
  - Develop a common core algorithmic approach



#### **ISR Assets**

| Asset        | Description                                                   |
|--------------|---------------------------------------------------------------|
| GBOSS        | Tower                                                         |
| GBOSS Lite   | Mini tower                                                    |
| Shadow/LEAP  | Unmanned aerial vehicle (UAV)                                 |
| MSIDS        | Video sensor                                                  |
| UGSS         | Seismic, acoustic & magnetic vehicle detector and counter     |
| IRID II      | IR intusion detector                                          |
| Night Imager | EO and IR detection triggered image capture                   |
| MASF         | EO detection and multiple-capability communications interface |
| ADDT         | Dismount detector                                             |
| AECT         | Biometric recognition                                         |
| Comm         | Hard wire or radio                                            |
| RR           | Radio repeater                                                |
| VS           | Video Scout                                                   |
| SMSS         | Mobile manned ground platform                                 |



#### **Admissible Configurations**

| COI Key →    |                        | A: Ambush I: IED H: HVI                                                               |      |      |              |      |              |             |      |      |
|--------------|------------------------|---------------------------------------------------------------------------------------|------|------|--------------|------|--------------|-------------|------|------|
| Sensor Key → |                        | MSIDS: video UGS: seismic, acoustic & magnetic vehicle detector and counter           |      |      |              |      |              |             |      |      |
|              |                        | IRID: IR intrusion detector Night Imager: EO and IR detection-triggered image capture |      |      |              |      |              |             |      |      |
| Exploitation | Key →                  | MASF: Detect and Comm ADDT: Dismount Detector AECT: Biometric Recognition             |      |      |              |      |              |             |      |      |
| Communicat   | ions Key $\rightarrow$ | Comm: hard wire or radio MASF: radio RR: Radio Repeater                               |      |      |              |      |              |             |      |      |
| Report Key → |                        | User: Human Operator SMSS: Mobile Manned Ground Platform                              |      |      |              |      |              |             |      |      |
|              |                        | VS: Video Scout UAV Manned Hand-Portable Downlink                                     |      |      |              |      |              |             |      |      |
|              |                        |                                                                                       |      |      |              |      |              |             |      |      |
|              |                        | Component                                                                             |      |      |              |      |              |             |      |      |
| coi↑         | AC#↓                   | 1                                                                                     | 2    | 3    | 4            | 5    | 6            | 7           | 8    | 9    |
| A, I, H      | 1                      | GBOSS                                                                                 | User |      |              |      |              |             |      |      |
| A, I, H      | 2                      | GBOSS Lite                                                                            | User |      |              |      |              |             |      |      |
| A, I         | 3                      | Shadow/LEAP                                                                           | VS   | VS   | VS           | VS   | VS           |             |      |      |
| A, I         | 4                      | Shadow/LEAP                                                                           | SMSS |      |              |      |              |             |      |      |
| A, I, H      | 5                      | MSIDS                                                                                 | User |      |              |      |              |             |      |      |
| A, I         | 6                      | UGS                                                                                   | Comm | SMSS |              |      |              |             |      |      |
| А            | 7                      | IRID                                                                                  | Comm | SMSS |              |      |              |             |      |      |
| A, I, H      | 8                      | Night Imager                                                                          | Comm | SMSS |              |      |              |             |      |      |
| A, I         | 9                      | UGS                                                                                   | MASF | SMSS |              |      |              |             |      |      |
| Α            | 10                     | IRID                                                                                  | MASF | SMSS |              |      |              |             |      |      |
| A, I, H      | 11                     | Night Imager                                                                          | MASF | SMSS |              |      |              |             |      |      |
| Α, Ι         | 12                     | Night Imager                                                                          | ADDT | Comm | SMSS         |      |              |             |      |      |
| Н            | 13                     | Night Imager                                                                          | AECT | Comm | SMSS         |      |              |             |      |      |
| Α, Ι         | 14                     | UGS                                                                                   | MASF | Comm | Night Imager | Comm | SMSS         |             |      |      |
| Α, Ι         | 15                     | UGS                                                                                   | MASF | Comm | Night Imager | ADDT | Comm         | SMSS        |      |      |
| A, I, H      | 16                     | Night Imager                                                                          | MASF | SMSS | Shadow/LEAP  | VS   | VS           | VS          | VS   | VS   |
| A, I         | 17                     | Night Imager                                                                          | ADDT | Comm | Shadow/LEAP  | SMSS |              |             |      |      |
| Α, Ι         | 18                     | Night Imager                                                                          | ADDT | Comm | Shadow/LEAP  | VS   | VS           | VS          | VS   | VS   |
| A, I         | 19                     | UGS                                                                                   | MASF | Comm | Night Imager | ADDT | Comm         | Shadow/LEAP | SMSS |      |
| A, I         | 20                     | UGS                                                                                   | Comm | RR   | Comm         | SMSS |              |             |      |      |
| Α            | 21                     | IRID                                                                                  | Comm | RR   | Comm         | SMSS |              |             |      |      |
| A, I, H      | 22                     | Night Imager                                                                          | Comm | RR   | Comm         | SMSS |              |             |      |      |
| A, I         | 23                     | UGS                                                                                   | MASF | RR   | Comm         | SMSS |              |             |      |      |
| A            | 24                     | IRID                                                                                  | MASF | RR   | Comm         | SMSS |              |             |      |      |
| A, I, H      | 25                     | Night Imager                                                                          | MASF | RR   | Comm         | SMSS |              |             |      |      |
| Α, Ι         | 26                     | Night Imager                                                                          | ADDT | Comm | RR           | Comm | SMSS         |             |      |      |
| Н            | 27                     | Night Imager                                                                          | AECT | Comm | RR           | Comm | SMSS         |             |      |      |
| A, I         | 28                     | UGS                                                                                   | MASF | Comm | RR           | Comm | Night Imager | Comm        | SMSS |      |
| Α, Ι         | 29                     | UGS                                                                                   | MASF | Comm | RR           | Comm | Night Imager | ADDT        | Comm | SMSS |



#### Asset Configuration Workflow Auto-Generates Bayesian Network

Asset Configuration #12

Bayesian Network Detection Probability in Agricultural Surveillance Zone





#### **Threat Stochastic Process**



**IED TSP Total** 



IED TSP Total = (Blue Force Presence Value + Red Force Presence Value + Terrain Value) \* IsRoad \* IsRadius



# **Collection Plan Optimization**

- Solved assignment problem with
  - 14 kinds of ISR assets
  - 29 different admissible configurations (some may be unavailable based on number of ISR assets available)
  - 6178 surveillance zones in 3 FOB Operating Regions
  - MIP size: 222,000 variables, 179,000 constraints
- Problem formulated in MPL and solved in CPLEX
  - Total solution time on standard laptop is < 30 seconds</li>
  - 15 20 seconds to load data from Excel/Text files into MPL
  - < 10 seconds for CPLEX to solve</p>
  - Additional time (~ 1 minute) for MPL to write the solution back to Excel



#### **Optimization Results**





### **Optimization Results Detail**





### **Portfolio Analysis**

- Display focuses on seven types of components.
- At small budgets, the GBOSS, GBLite, and UAV were not affordable relative to their value





# Topics

- DoD acquisition: beyond the horse blanket
- Acquisition key elements technical approach
- Valuation first steps: WFPAC prototype
- Plug-n-play portfolio first steps: VIR prototype
- Acquisition valuation R&D



### **Anytime Valuation R&D**

- Distributed valuation
  - Concurrent valuations at multiple locations with varying available information
  - Hierarchy naturally corresponds to force structure and asset control
- Account for future portfolio candidates and pop-up technology disruptors
- Support systems and systems-of-systems plug-and-play
  - Acquisition of system components with variable future systems' needs
- Reconcile commanders' alternative subjective priorities
  - Over current and future missions
- Pedigree of asset and mission-focused reasoning
  - Meta-data maintains historical knowledge and decision rationales
  - Supports valuation adaptation to evolving mission space
- Transition path from legacy systems and methods