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Abstract – This paper examines the application of data 

fusion and probabilistic reasoning for investment decision 

and its performance evaluation.  Specifically, Bayesian 

networks are used to model the qualitative and 

quantitative relationships between various factors that 

affect the dynamics of equity index (S&P 500) for 

predictive analysis. The resulting assessments are applied 

to trading decisions utilizing derivatives such as S&P 

futures and options. The simulated trading performance 

results demonstrate the effectiveness of the Bayesian 

network approach.  
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1 Introduction 

In the global marketplace, trading and investment are the 

cornerstones of economic growth and job creation. Investors 

have to sift through a large amount of financial information 

in order to decipher the market behavior, predict future 

market directions, and make trading decisions in hope for 

good portfolio returns. Given the complexity of the markets 

and the high stake of trading decisions, financial 

engineering and risk analysis have become an important 

research field.  
 

In the financial markets, there are two main schools of 

thought for portfolio modeling, market analysis and stock 

selection. Fundamental analysis looks into economic factors 

to make subjective judgments on the qualitative relationship 

between portfolio and market returns, whereas technical 

analysis uses quantitative historical data of a security to 

predict its future price movement. To judiciously utilize 

both qualitative and quantitative information, data fusion 

has emerged as a highly relevant and promising paradigm 

for financial engineering. In particular, Bayesian networks 

are well suited for data fusion of financial data, because 

they not only provide graphical models for fundamental 

analysts to intuitively capture their knowledge of economic 

factors and visualize the market trends, but also offer 

powerful probabilistic reasoning tools for decision making 

and risk analysis from complicated large-scale inference 

networks with multivariate nodes [1-8].  

The applicability of Bayesian networks for portfolio 

modeling and analysis has been demonstrated recently [6] 

[8]. Some examples from the oil industry and gold mining 

industry are given to illustrate the use of Bayesian Network 

models to describe not only qualitative information such as 

belief, judgments, and fundamentals of the industry, but 

also quantitative data such as historical stock prices and 

movements. The inference results yield the posterior 

probabilistic distributions of the portfolio returns, which can 

be used for both trading decision and risk analysis. In 

contrast, many traditional technical analysis methods only 

yield the summary statistics such as mean and variance of 

the expected portfolio returns. Most of these methods are 

applied for market analysis only, without explicit linking to 

active stock selection. Recently, Bayesian networks have 

been applied for stock selection [1-4]. They focus on simple 

buy-or-sell trading strategies, and typically use the tool for 

short-term trading such as day trading or weekly trading. 

These simulated tests on short-term trading were less 

influenced by subjective judgments, but mainly relies on 

historical data; therefore, the results mainly reflect the 

technical capability of Bayesian networks.  
 

This paper employs a Bayesian network (BN) approach 

for both predictive market analysis and trading. The focus is 

on long-term investments, using not only asset buy-or-sell 

but also options trading strategies. Since long-term trading 

rides out the market fluctuation, our BN framework is 

designed to model the inter-dependent relationships among 

market factors and make asset allocation decisions for long-

term investment and risk mitigation.  In doing so, the built-

in capabilities of Bayesian networks in performing both 

fundamental and technical analyses are utilized.  
 

Extensive simulations and testing are carried out using 

real-world financial data. Our Bayesian network performs 

predictive analysis of the Equity index (S&P 500) data from 

1990 to 2014, and use the predicted market movements to 

support trading decisions on S&P futures and options. 

Considerable profit potential are demonstrated.  

1.1 Prior Art and Related Work 

There are two basic categories of market or investment 

analysis techniques, namely, fundamental analysis and 
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technical analysis. Fundamental analysis relies on 

economical and financial indicators to qualitatively evaluate 

the value of a business, predict its future stock valuation, 

and assess its credit risks. Analysts capture their knowledge, 

speculation, and insights of the market into fundamental 

analysis, but do not have a systematic way of incorporating 

the historical market data. In contrast, technical analysis is 

considered a quantitative approach, in which numeric 

indicators of the stock market, such as stock prices, moving 

average, momentum, and volume dynamics, are modeled 

and analyzed to predict future market movements. Many 

mathematical and statistical methods have been used for 

quantitative analysis, such as time series analysis, 

regression analysis, finite difference methods, and Monte 

Carlo simulations [13].  
 

Quantitative analysis is predominately popular in recent 

years because of the increasing availability and accessibility 

of a large amount of financial data, sometimes free from the 

Internet. Meanwhile, advances in numerical tools and 

computing devices have led to fast algorithms that can 

process large-scale dynamic financial data at manageable 

complexity. Nevertheless, technical analysis incurs several 

main drawbacks and criticisms. It focuses on quantitative 

relationships among economic variables, but does not 

provide an easy venue for market analysts to incorporate 

their subjective judgment or special knowledge that may 

considerably affect the portfolio and stock picking 

decisions. While mathematical models used for financial 

data analysis have become increasingly sophisticated, they 

are not as competent in capturing the intrinsic risk 

correlations and inter-dependency among a large number of 

business players on the market.  
 

In view of the pros and cons of both fundamental and 

technical analyses, Bayesian networks emerge as an 

attractive framework for portfolio modeling and analysis [1-

8]. A Bayesian network offers a graphical representation 

that allows an analyst to intuitively capture market factors 

in the graphical model and visualize the relationships 

among the variables in the model. As such, judgmental 

factors in qualitative analysis can be fully incorporated. 

Utilizing the basic graph structure, quantitative information 

from historical data provides training, analysis, and testing 

of the graphical model to generate the probabilistic 

distributions of portfolio returns. It provides a powerful tool 

to explicitly capture the dependence among market factors 

as well as the sensitivity of portfolio returns, which are 

essential for principled risk control.  
 

Most of the work on Bayesian networks for financial 

analysis focuses on portfolio risk analysis. In [6][8], the 

semantics of Bayesian networks are established to model 

portfolio returns. The output of the Bayesian network is the 

marginal or mode of the posterior joint distributions of the 

market variables of interest. The inference results describe 

the portfolio returns, which match well with the actual 

portfolio returns for a set of test data obtained over an 

arbitrary period from 1996 to 1998 [8].  
 

The aforementioned work focused on portfolio modeling 

and analysis, but did not discuss how these analytical 

outcomes impact the performance of stock selection. In [7], 

a Bayesian network is used as a modeling tool for stock 

picking, and the investment “skills” of a Bayesian network 

are evaluated using HUGIN software. The evaluation is 

done using the financial data from the Danish stock market, 

for which only a simple Bayesian model is designed using 

buy-or-sell trading recommendations. In [1-2], Bayesian 

networks are considered for day trading, in which the 

market trend is predicted for stock prices on a daily basis. 

The random variables in the Bayesian network represent the 

up and down of daily stock prices, which are used to predict 

the next-day trend and make the buy-or-sell decisions for 

one day. In [3], a variant of dynamic Bayesian networks, 

termed hierarchical hidden Markov model, is proposed for 

semi-supervised learning of predicting market directions. 
 

These stock trading strategies are simple buy or sell 

decisions, which are often used for short-term day trading. 

In our work, we consider not only buy-or-sell strategies, but 

also option trading strategies that are used for investing over 

a longer period of time. Such investment strategies are 

typically more concerned with market fundamentals, which 

can ride out the downtrends and short-term market 

fluctuation. As such, our study accentuates the capability of 

Bayesian networks in accurately reflecting fundamental 

analysis using domain knowledge and historical data. In 

contrast, portfolio analysis for day trading reflects the 

technical analysis capability of Bayesian networks [1-2].  

2 Bayesian Networks for Data Fusion 

in Market Analysis 

Bayesian networks (BNs) are acyclic directed graph 

which include nodes and arcs. Each node in the network 

represents a random variable and the arcs between nodes 

represent their probabilistic relationship [14]. The network 

topology describes the conditional dependency between the 

variables and the network as a whole represent the joint 

probability of all the variables.  Each variable could be a 

discrete or continuous variable and the relationship between 

nodes could be probabilistic or deterministic.  
 

Once a Bayesian network is built to model a domain 

specific problem, one of the main purposes is to compute 

the conditional probability of a particular node given the 

observed evidence from other nodes. This “fusion” process, 

also called probabilistic inference, can be executed in an 

efficient “message passing” manner and is one of the main 

advantages of applying the BN modeling tool.  

2.1 S&P Predictive Model  

We now build a Bayesian network model to describe the 

S&P dynamics based on several highly relevant factors [4-
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5][7-8]. To do so, we first construct the network topology 

from domain knowledge and subject matter experts [9-12], 

similar to the fundamental analysis process. Then, we 

illustrate the technical analysis aspect in which the 

conditional probabilities between children and parent nodes 

of the directed arcs in the network are learned statistically 

from the historical data. 
 

There are many factors affecting S&P market dynamics.  

Some of the most obvious examples include interest rate 

(LIBOR), consumer price index (CPI), unemployment rate 

(UR), money supply (MS), housing start (HS), and implied 

volatility index (VIX).  Note that interest rate is an 

important driver of the nation’s economy. Stock market 

tends to go higher when the interest rate is low which also 

makes other alternative investment such as fixed income 

treasuries less attractive. CPI measures the inflation level of 

the consumer price and is highly relevant to the overall 

economics and equity market. 
 

Unemployment rate is also an important factor that could 

affect the market direction. A high unemployment rate 

might be bad for the market depending on other factors such 

as government momentary policy.  In addition, money 

supply and housing start may have some impact on the 

market direction as well.  Finally the implied volatility 

index (VIX, also called the fear and greed index) measures 

the S&P volatility based on the S&P one-month options and 

might be a good indicator of market direction. High 

volatility implies a potential down trend and vice versa.  
 

Taking into account of aforementioned key economic 

factors, we construct an exemplary Bayesian network to 

model the S&P dynamics, as shown in Figure 1. This model 

has been obtained by working with subject matter experts 

and validated by historical data.  Among the factors 

mentioned earlier, some of them (money supply and 

housing start) are eliminated due to their weak correlations 

to the S&P future directions. In the network, each node is 

modeled as a binary random variable with two state values: 

“up” or “down”. Note that in Figure 1, SP2 indicates the 

potential future S&P state (“up” or “down”) for the next 

trading period and SP1 represents the S&P state in the 

current trading period. The remaining variables in the 

network represent their corresponding states in the current 

period. For example, an “up” state for VIX (VX1) indicates 

the implied volatility has gone up in the current time period.  
 

The purpose of the BN model is to predict S&P market 

direction for the next trading period in order to facilitate 

trading decision or risk management. The network 

parameters (conditional probabilities of a child node given 

its parents) are learned from the historical data [15].  The 

historical data is organized in a sliding widow manner so 

that a series of past data can be used to train the model for 

predicting the probability of the market trend at the next 

time period.  
 

Specifically, we collected the historical data from 1990 to 

2014, where the S&P and VIX data are obtained from the 

yahoo finance web site and the rest are downloaded from 

Federal Reserve economic data repository [16]. 

Specifically, we set the trading cycle to be one month and 

the training window size to be 180 months.  In other words, 

we use the historical data from the past 180 months to train 

the model and apply it to predict the market direction for the 

next trading month. We repeat the prediction process from 

2005 to 2014 for 120 trading months. An example set of 

conditional probability tables (CPT) in the network learned 

from the historical data is shown in Table 1. 

 
Figure 1. A Bayesian Network for S&P Dynamic Model 

 

Table 1.  An example set of CPTs leanred from historical data 

 

SP2 = “up” SP2 = “down” 

0.61 0.39 

 

SP2 VX1 = “up” VX1 = “down” 

“up” 0.42 0.58 

“down” 0.50 0.50 

 

SP2 VX1 SP1 = “up” SP1 = “down” 

“up” “up” 0.31 0.69 

“up” “down” 0.84 0.16 

“down” “up” 0.26 0.74 

“down” “down” 0.88 0.11 

 

SP2 LB1 = “up” LB1 = “down” 

“up” 0.42 0.58 

“down” 0.40 0.60 

 

SP2 UR1 = “up” UR1 = “down” 

“up” 0.31 0.69 

“down” 0.40 0.60 

 

SP2 UR1 CP1 = “up” CP1 = “down” 

“up” “up” 0.79 0.21 

“up” “down” 0.76 0.24 

“down” “up” 0.68 0.32 

“down” “down” 0.95 0.05 
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2.2 Trading S&P Futures and Options 

S&P futures and their options are traded in several financial 

markets, such as the Chicago Mercantile Exchange (CME) 

[17] and the CME electronic GLOBEX platform [18]. There 

are several common trading practices on the markets [21], as 

quoted below from Wikipedia.    

• Long: a long position is to buy or own a underlying 

entity (e.g., asset, index, or interest rate futures); 

• Short: a short position is to sell or owe;  

• Put: a put option gives the owner of the put, the right, 

but not the obligation, to sell an asset (the underlying) 

at a specific price (the strike), by a pre-determined date 

(the expiration or maturity date) to a given party (the 

seller of the put). Put options are most commonly used 

in the stock market to protect against the decline of a 

stock price below a specific price.  

• Call: a call option gives the buyer of the call, the right, 

but not the obligation, to buy an agreed quantity of the 

underlying from the seller (or “writer”) of the call 

option before a certain time (the expiration date) at a 

certain strike price.  
 

S&P futures is one of the most liquid futures markets in 

the world. One can long or short the futures contracts as 

long as there is a counter party who is willing to take the 

opposite side. Similarly, the S&P futures options market is 

extremely liquid and popular.  One could long or short the 

put or call options depending on the goals of the trading 

strategies.  
 

By writing (selling) the put options when the market is 

expected to go higher would result in the options expiring 

worthlessly and therefore the seller could keep the collected 

premium.  Similarly, the seller could keep the premium 

collected by writing the call options if the market does not 

go up. However, while the potential loss of buying options 

is limited by the premium paid, shorting options could be 

very risky because the loss is only limited by the market 

actions. For example, shorting a call option while the 

market continues going up could result in a severe loss.  

2.3 Options Pricing Model 

To derive the fair option price, a common practice is to 

assume that the underlying asset follows a geometric 

Brownian motion (GBM) model with constant drift and 

volatility, described by the following stochastic differential 

equation: 
 

dS = µ S dt +σ S dW              (1)  
 

where S is the asset price, µ is the drift parameter, σ is the 

volatility, and W is a wiener process or Brownian motion. 

With the assumed model, a closed-form options pricing 

model has been developed [19-20], as follows:  
 

c = S
0
 N(d

1
)−K  e

−rT
N(d

2
)               

p = K  e
−rT

 N(−d
2
)− S

0
 N(−d

1
)

      (2) 

where  

d
1
=
ln(S

0
/K )+ (r +σ 2 / 2)T

σ T

d
2
=
ln(S

0
/K )+ (r −σ 2 / 2)T

σ T
= d

1
−σ T

            (3) 

In eqn. (2), c is the price of a call option, p is for put option, 

S0 is the current asset price, K is the strike price, T is the 

maturity (expiration) time, and σ is the asset volatility. This 

popular Back-Scholes-Merton (BSM) option pricing model 

had revolutionized the derivative industry for the last 

several decades. 
 

Note that the value of an option consists of both time 

value and intrinsic value. While the intrinsic value depends 

on the relative strike price to the asset value, the time value 

always reduces to zero at the expiration. As mentioned 

earlier, an important assumption behind the derivation of 

the BSM pricing model is that the price of the underlying 

asset follows a GBM model with constant drift and 

volatility.  
 

However, since the stock crash of October 1987, the 

volatility of stock index options implied by the market 

prices has been observed to be “skewed” in the sense that 

the volatility became a function of strike and expiration 

instead of remaining a constant. This phenomenon referred 

to as the “volatility smile” has since spread to other markets 

[21].  Because the original BSM model can no longer 

account for the smile, investors have to use more complex 

models to value and hedge their options.  In this paper, for 

the purpose of evaluating the trading performance, we will 

emulate the option prices subject to the smile phenomenon 

by utilizing the historical implied volatility index (VIX) 

data and approximate the volatility smile as a quadratic 

function of moneyness
1
 [22]. 

2.4 Trading Process 

As mentioned earlier, the target node (SP2) in the 

Bayesian network shown in Figure 1 represents the one-step 

prediction of the S&P market in the next trading cycle. We 

use a monthly cycle to synthesize the trading process.  At 

the beginning of each month, we simulate the trading on the 

S&P futures and options markets based on the strategies 

derived from the BN model predictions.  We use historical 

end-of-the-day S&P settlement prices and the options 

pricing model (Section 2.3) to emulate the filled-prices of 

the transactions. We assume no transaction cost and no 

slippage.  

                                                
1 Moneyness is the relative position of the current price of an 

underlying asset with respect to the strike price of a derivative. 
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3 Test and Simulation  

We apply two trading strategies based on the BN 

prediction. The first strategy is “Long and Short” where we 

either long the S&P index futures if the prediction is “up” or 

short the futures if the prediction is “down”. The second 

strategy is “Options Writing” where we either short the 

S&P futures put options when the predicted trend is 

expected to be up or short the call options when the trend is 

expected to be down.  We compare the trading 

performances to the naïve buy-and-hold strategy. 

3.1 Long and Short Strategy 

In the “Long and Short” (LS) strategy we either long the 

S&P if the prediction is “up” (posterior probability of SP2 is 

“up” is greater than 0.5) or short the S&P if the prediction is 

“down” (posterior probability of SP2 is “down” is greater 

than 0.5).  We apply a monthly trading cycle to test the 

strategy.  On the first trading day of each month, if the 

predicted trend is up for the coming month, 100% of the 

equity will be committed to a long position of the S&P 

futures for the entire month.  Similarly, 100% equity will be 

committed to a short S&P futures position for the entire 

month if the prediction is down.  

3.2 Options Writing Strategy 

With “Options Writing” (OW) strategy, we either short 

the S&P put options when the trend is expected to be up 

(posterior probability of SP2 is “up” is greater than 0.5) or 

short the call options when the trend is expected to be down 

(posterior probability of SP2 is “down” is greater than 0.5). 

We also apply a monthly trading cycle to be consistent with 

the monthly expiration options.  Specifically, if the market 

is predicted to be up, we will short the at-the-money
2
 

(ATM) S&P put options expiring in the coming month; and 

if the market prediction is down, we will short the 

corresponding S&P ATM call options. We will keep the 

options until expiration before repeating the same process in 

the next trading cycle.   
 

Note that the options could expire out of the money
3
 

(OTM), and therefore become worthless.  In that case, the 

premium collected by the seller becomes the profit and the 

positions will be closed automatically by the exchange. On 

the other hand, if the options expire in the money (ITM), the 

options will have to be settled in cash in the sense that the 

sellers have to pay the market price to “buy” back the 

options they sold. In that case, if the market price is higher 

than the premium collected, the seller will incur a loss.  

                                                
2 When the option strike price is equal to the current price of the 

underlying asset. 
3 The strike of a call option is above the market price or the strike 

of a put option is below the market price of the underlying asset. 
 

3.3 Simulated Trading  

Figure 2 shows the historical data of the relevant factors 

in the BN model. Since there are only limited historical 

options prices with specific strikes and expirations available 

in the public domain, we simulate the options filled-prices 

based on the model described earlier. Specifically, options 

prices are obtained by utilizing the BSM model given the 

S&P price, risk-free interest rate, volatility, and an 

expiration date of 4 trading weeks after writing the options.  

The S&P prices are based on historical data and served as 

the ATM strike prices. Risk-free interest is based on 

historical 3-month LIBOR data and volatility is based on 

the historical implied volatility index (VIX).  However, as 

mentioned earlier, it is well known that true volatility is not 

a constant but a function of strike and expiration (volatility 

smile and surface). To obtain a more realistic options price, 

we develop a smile model and adjust the option price 

accordingly as described in Section 2.3. The results have 

been validated against the available market data and proved 

to be reasonably accurate.  

3.4 Performance Results 

Figure 3 summarizes the performance of the LS strategy.  

As shown in the figure, the strategy longs the market most 

of the time, while shorts the market only about 10% of the 

time based on the assessed probabilities obtained by the 

Bayesian network model.  The performance of this dynamic 

trading strategy is significantly better than the buy-and-hold 

approach while with smaller risk/volatility. 
 

Figure 4 shows the performance of the OW strategy.  As 

shown in the figure, while the rate of return is lower than 

that of the LS strategy over the 10 years period, the 

percentage of positive return is much higher (75% vs. 63%).  

The rate of return of this dynamic trading strategy is also 

much higher then the buy-and-hold approach while with 

smaller risk/volatility.  Note that one could easily employ 

leverage in options trading. Typically, the trader is allowed 

to have up to 10 to 1 leverage by the exchange.  For 

example, with a 2 to 1 leverage (OW-II, selling twice as 

many as options contracts per capital) and a 4 to 1 leverage 

(OW-IV), the performances are shown in Figures 5 and 6, 

respectively. The results show that with higher leverage, the 

returns are much better while the risk is also increased. The 

strategy is clearly very effective and flexible. Depending on 

the risk aptitude of the investor, one could conceivably 

adjust the leverage level to meet a range of desirable 

investment goals with different risk-reward trade-offs.  
 

 Table 2 summarizes the trading results. In the table, two 

additional performance metrics, maximum drawdown and 

Sharpe ratio, are given for comparison.  Specifically, 

drawdown is defined as the peak-to-trough decline during a 

specific period of an investment. The Sharpe ratio is a 

measure for calculating risk-adjusted return. It is the average 

return earned in excess of the risk-free rate over the return 

volatility (standard deviation). It can be seen from the table 
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that LS and OW perform much better than the naïve buy-

and-hold policy. The BN-based strategies not only offer 

higher returns over the 10-year period, but also exhibit 

smaller drawdowns and volatilities. Furthermore, by 

employing leveraged options writing strategies, the 

performance can be adapted for different risk/reward levels. 

For example, an aggressive investor might decide to employ 

a higher leverage ratio than a conservative one.  
 

Table 2. Performance Comparison 
 

 Positive 

Return 

Rate of Return 

(10 yrs) 

Maximum 

Drawdown 

Sharpe 

Ratio 

Buy-Hold 62.2% 74.3%  52.6% 0.39 

LS (BN) 63.0% 168.5%  38.8% 0.69 

OW-I (BN) 74.8% 110.6%  24.4% 0.80 

OW-II (BN) 74.8%  307.0%  45.1% 0.86 

OW-IV (BN) 74.8%  1,012.6%  75.7% 0.89 
 

4 Conclusion 

We have developed a data fusion approach using 

Bayesian networks for predicting market directions to 

support investment and trading decisions.  The Bayesian 

network is constructed from both historical data and domain 

knowledge of several relevant financial factors. The 

resulting model is applied to predict the S&P direction for 

the next trading cycle.  Several trading strategies are 

implemented based on the market predictions.  The results 

of the simulated trading using these strategies over a 10-

year period show considerable potential equity gains. The 

BN-based strategies significantly outperform the naïve buy-

and-hold policy, which demonstrate the potential and 

effectiveness of the BN approach.  
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