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Abstract – In this work, methods are developed to 

overcome the inherent problems of network abstraction 

and analysis from multiple heterogeneous data sources.  

RDF and attributed graphs are two common choices for 

graph modeling.  While both are very similar with 

respect to the type of information that can be 

represented, characteristics intrinsic to each 

representation affect the analysis performed over the 

resultant network abstractions.  By selecting a dual 

graph representation approach and leveraging the 

strengths of both models, the semantic analysis 

performed over RDF graphs is combined with the 

topological analysis applied to attributed graphs, to 

produce a comprehensive foundation for network 

analysis that cannot be easily achieved, nor its value 

matched, by one representation independently. 

 

Keywords: Graphs, RDF, attributed graphs, network 

abstraction, data alignment. 

 

1 Introduction 

Networks are quickly becoming the de facto 

representation choice for modeling real world data 

involving entities and relationships. A network model 

provides more flexibility over traditional relational data 

models, and does not require a predefined schema or 

consistent data keys across each entry of the same type.  

These criteria are especially important when modeling 

data that evolves over time, data containing complex 

relations, or data that has the potential for a multitude of 

query perspectives. 

The process of creating a network abstraction, and 

analyzing the resultant network is challenging for a 

number of reasons.  Representing entities and relationships 

from raw data sources as a network in a pragmatic manner; 

the inability to capture details found in descriptive data 

through a network representation; and the process of 

normalizing data to a common structure across data sets or 

related networks are all factors that, if done poorly, may 

result in an incomplete and inaccurate analysis network, 

ultimately leading to incorrect conclusions and results. 

Given the increased amount of disparate data required to 

make timely and informed decisions, a plethora of 

research is being conducted in the areas of network 

abstraction and analysis. At the forefront of this area is the 

objective to produce automated methods for aligning and 

constructing a network model from heterogeneous, yet 

related, data sets in order to assess and harvest 

information. 

The choice of network representation is an important 

decision.  Networks are ubiquitously represented as 

graphs, a finite nonempty set of objects called vertices, 

together with a set of pairs of distinct vertices called edges 

[1], however the structure of these graphs, and the varied 

ways a single data set can be represented as a graph leaves 

much to consider.  Two popular graph topologies are the 

representation provided by utilizing the Resource 

Description Framework (RDF) data model, and graphs 

produced by following an attributed graph model.  

Although each format can represent the same information, 

each also has inherent advantages and disadvantages when 

used as the underpinnings of network analysis. 

In this work, we develop methods to address the 

inherent problems of network abstraction and analysis 

from real-world data by using both representations.  We 

begin by building an RDF knowledge graph that provides 

a complete and detailed representation of the data sets 

under investigation.  The RDF representation is well 

suited to this task since it is expressive, closely linked to 

knowledge representation tools, and standards based. 

Unfortunately, the resulting RDF representation can be 

poorly suited to perform traditional network analysis due 

to its structure.  To overcome this shortcoming, we 

abstract the RDF graph to an attributed graph through an 

approach that uses the SPARQL query language in an 

extraction process, capturing the key entities, events, and 

relationships relevant to analysis.  We then describe the 

application of graph and social network analytics on the 

attributed graph abstraction, which cannot be directly 

applied to the RDF knowledge graph, to derive valuable 

results concerning the entities and events under 

observation. 

In the remainder of this paper, we discuss each of the 

graph models in detail along with our rational for using 

RDF for the master knowledge graph and attributed graphs 

for the network abstractions that we perform analysis on. 

(Section 2).  Section three describes related approaches 
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and how they differ from our strategy. In section 4, we 

discuss our approach to perform network abstraction and 

analysis utilizing both RDF and attributed graph formats.  

Section 5 concludes our discussion with observations, 

findings and recommendations. 

2 Graph abstraction models 

In this section we present two common graph 

representation paradigms, RDF and attributed graphs.  

Although both graph formats can represent the same 

content each format has its own strengths to offer. 

2.1 RDF 

RDF is a model of assigning named properties and 

values to objects [2]. The RDF model contains 3 sets: 

Resources, Literals, and Statements. Each statement is a 

triple of {subject, predicate, object} where a predicate is a 

special type of resource. Each statement defines a triple 

that represents a single directed edge within an RDF 

graph, with the subject (a resource) representing the 

source vertex, the property representing an edge label, and 

the object (either a resource or literal value) representing 

the target vertex. In this way, RDF statements express 

directed labeled graphs [2,3]. 

Importantly, the subject of a statement must be a 

resource, while the object may be either a resource or a 

literal value (such as a string, integer, date, etc.). Literal 

values may not be the origin of statements, which allows 

for literal statements in RDF to model vertex attributes 

from attributed graphs [4]. 

RDF graphs excel in conceptual modeling and 

knowledge representation applications where the 

expressivity of the format can be leveraged to describe 

complex relationships and characteristics among existing 

resources.  When concept representation is formalized, for 

example by an ontology, data can be represented 

according to the constructs outlined to produce a 

normalized RDF graph model. RDF is a popular format 

for ontological modeling, in part due to the designation of 

the Web Ontology Language (OWL) as a W3C standard 

[5]. 

RDF enables analysis to be performed by exploring the 

model through query interactions.  This exploration is 

made more powerful through the use of an ontology, or a 

composition of ontologies, to model the objects and 

relationships found within the data.  This facilitates 

network analysis from an information retrieval 

perspective. The standard RDF query language is 

SPARQL [6]. The SPARQL query language for retrieving 

information from RDF data seeks to find a subgraph 

pattern match given a pattern defined by the query, and the 

RDF data graph to search over. Through SPARQL, 

specific patterns of interest can be discovered. Although a 

powerful query tool, subgraph matching itself gives 

limited insight into the overall structure of the graph, 

including the global importance/centrality of entities. 

We focus on RDF models of large and expressive 

knowledge graphs. The verbose structure of this type of 

graph makes analysis by classical graph analysis 

algorithms challenging. This is especially true when data 

is expressed following a detailed representation. In 

knowledge representation graphs, the vertices defined can 

represent a wide variety of objects, not just the types of  

 

Figure 1.   Semantic content represented as an RDF graph (left), and an attributed graph (right). 

 

Figure 2.  Attributes of attributes, represented in an 

RDF graph. 
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Table 1 : Comparison of RDF and Attributed Graphs 

RDF Attributed Graphs 

The RDF model requires only triples to be stored. Objects to be stored depend on the specific 

implementation. 

RDF is a W3C standard, including supporting tools such as 

SPARQL and OWL. 

There is no well-established standards committee 

resulting in multiple implementations. 

RDF clearly defines a set of exchange formats that all 

databases are expected to support. 

It is not easy to transfer data between databases without 

support for a common exchange format. 

Since RDF is a standard, all API implementations follow the 

same basic model. 

Multiple implementations results in confusion between 

the model, API, and database. 

RDF only supports directed graphs. Attributed graphs can support both directed and 

undirected graphs. 

Edges in RDF only support a single label (the predicate). In 

some cases, this can lead to complex reification schemes to 

make statements about a statement. 

Edges in an attributed graph can have attributes just like 

vertices. This allows for the representation of 

information about the relationships. 

Attribute information is stored as triples, leading to more 

triples than an equivalent attributed graph representation. 

Attribute information can be efficiently stored as 

key/value pairs on the graph elements. 

 

objects that a given graph analytic is interested in. Without 

filtering criteria at the analytic level, or an extraction of 

the desired subgraph of vertex and relationship types, all 

vertex types will be considered by automated analysis 

algorithms.  If, for example, there is a desire to calculate 

betweenness centrality across all entities of a given type, 

applying a traditional implementation of the algorithm 

directly to the RDF knowledge graph will result in 

unintended properties, entities, and relationships being 

included within the calculation. This will impact the 

interpretation of the results.  To avoid this side effect, a 

filtering technique could be applied to extract only the 

desired entities and relationship types. If done directly on 

the knowledge graph, this risks a loss of information from 

the removal of properties/attributes which may be required 

during further analysis. 

2.2 Attributed graphs 

An attributed graph G = {V, E, Av, Ae} is defined by a 

nonempty set of vertices V, a set of edges E (directed, 

undirected, or a combination), a set of attributes on the 

vertices Av, and a set of attributes on the edges Ae.  The 

attributed data represented within the graph exists 

separately from the graph structure itself, with attributes 

present on each vertex and edge.  This network 

representation is in contrast to RDF graphs, where vertices 

and attributes are treated uniformly, leading to a 

significant increase in size in the graph topology [7]. 

 

We are primarily interested in attributed graphs where 

the attributes of graph elements are represented as 

key/value stores. Such graphs are often referred to as 

“property graphs”. 
Attributed graph models permit a more condensed 

representation from a visual, analytical, and traversal 

standpoint. Although literal statements in RDF achieve a 

similar goal as attributes in an attributed graph, the 

attributed representation can efficiently encode the 

key/value pairs [4]. Figure 1 illustrates two graphs 

representing the same content.  The graph on the left is an 

RDF representation of novel, its publisher, attributes of 

each, and the relationship between the two.  A total of 

eight vertices and seven edges are created to represent this 

information as an RDF graph.  In contrast, an attributed 

graph representation (Figure 1, right) can be constructed 

with two vertices and a single edge, with each graph 

element having its own set of attributes to detail the 

semantic data. 

A drawback of the attributed graph model is the risk that 

it may be used to model information in a way that restricts 

expressiveness.  A good example of this is the problem of 

representing attributes of attributes, such as a valid time 

period of an address, cannot be easily represented in the 

above attributed graph model, but can be achieved in the 

example RDF graph by adding additional edges and 

vertices incident and adjacent, respectively, to an address 

vertex, illustrated in Figure 2. 

202



In general, the attributed graph model tends to promote 

a condensed, streamlined topology that requires less 

storage, and is more tailored toward structural graph 

analysis, such as social network analysis algorithms. 

2.3 Summary of Comparison  

To summarize the above comparison of RDF and 

attributed graphs: they can both model the same 

information in nearly the same way, but each has 

advantages. A high level overview of these advantages is 

presented in Table 1. Based on this overview, our 

recommendation for using RDF vs Attributed Graphs is: 

 

Prefer to use RDF for: 

  Large knowledge graphs that require rich expressiveness 

and a foundational ontology. RDF is standards based 

which is important for knowledge graphs since they 

often need to be shared. There are many tools built 

around RDF for knowledge modeling (OWL, etc.)  Graph data that must be queried for specific subgraphs. 

RDF can be queried using SPARQL, which is a 

standards based, full featured query language for 

RDF. 

 

Prefer attributed graphs for: 

  Graphs that need to be queried for elements possessing 

specific attribute values. Attributed graphs efficiently 

store attribute values as key/value pairs on the graph 

elements. This brings both efficiency and conceptual 

advantages for indexing elements by their attributes.  Graphs that need to be visualized. It is often easier to 

render attribute information as a table than as vertices 

and edges.  Prototyping and simple applications that will not need to 

be shared. Subjectively, attributed graph models tend 

to be easier to work with than RDF from an 

implementation perspective. This can save time when 

building prototypes and can make applications easier 

to maintain.  

3 Related work 

Related work develops a methodology for storing 

attributed graphs in RDF triple stores [4]. This related 

work describes how attributes can be expressed as literal 

statements and edge attributes can be encoded using 

reification in RDF.  

The concept of semantic social network analysis [8] 

attempts to take social network algorithms and heuristics 

ordinarily executed over a traditional entity-relation graph 

and modify those algorithms so that they can be applied to 

an RDF formatted graph.  The goal is to leverage semantic 

web technologies to merge and exploit the most valuable 

features from the domains of social network analysis and 

the semantic web.  Algorithms executed over RDF allows 

for the preservation and possible utilization of the 

semantic information found within the data, particularly 

the typed relations that exist, while at the same time 

providing the ability to analyze the structure of the graph 

and interaction between entities to gain valuable insight, 

for example, the most influential player in the network. 

Accomplishing the objective of semantic social network 

analysis requires each social network algorithm or 

heuristic to be implemented as a SPARQL query.  Starting 

with an RDF social graph, SPARQL extensions are 

utilized to extract an RDF-subgraph from the RDF based 

on defined resources or property types.  One or more 

SPARQL queries analogous to traditional SNA metrics are 

then applied to the subgraph.  For a subset of algorithms, 

post processing is required. 

This method has advantages over the strategy of 

applying SNA to RDF graphs by extracting a raw, i.e. 

untyped, graph of one or more relationship types from the 

RDF graph.  From the semantic social network analysis 

perspective, too much knowledge is lost in this extraction 

which could otherwise be used for filtering and 

customizing results.  In general, extractions of this form 

reduce the expressivity of the social network 

representations to simple un-typed graphs [8]. 

Our dual graph representation approach, discussed in 

the subsequent section, addresses the issues intrinsic to an 

untyped graph extraction from RDF.  By leveraging 

attributed graphs, we are able to keep necessary semantic 

information intact, preserving entity and relationship 

types, as well as other useful attributes for each vertex and 

edge in the graph.  Additionally, unlike the RDF-based 

 

Figure 3.  Overview of two graph representation 

approach. 
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semantic social network analysis approach, the attributed 

graph format mirrors a typical entity-relation graph 

representation, and thus there is no need to create new 

implementations of traditional SNA centrality and 

community detection algorithms in order to apply them to 

the network. 

4 A two graph approach 

Each of the previously introduced graph formats have 

the capacity to represent the same, or very similar network 

and semantic content.  Format selection, however, should 

be a cautious decision dependent on the type of analysis to 

be performed on the network data, with each graph model 

possessing its own analytic strengths and weaknesses.  

Proper structural and semantic network analysis can be 

more easily achieved by using multiple formats, 

leveraging the strengths of each format to divide and drive 

the investigation.  To this end, we have chosen a two 

graph representation approach, sacrificing increased 

storage costs for an improvement in the flexibility and 

quality of analysis. 

At a high level our approach follows as depicted in 

Figure 3.  Given multiple heterogeneous data sets, we seek 

to create and analyze a normalized common graphical 

model.  To construct this model, we begin with an 

ontological alignment process to homogenize all available 

data from the raw data sources.  The product of this 

process is an all-encompassing RDF knowledge graph, 

created for two purposes.  First, the RDF graph captures 

all available knowledge at a detailed level and is the 

foundation for all further analysis.  Utilizing the detailed 

data representation of the aligned RDF graph, SPARQL 

queries can be issued for targeted information retrieval 

and initial exploratory analysis.  Secondly, this graph acts 

as the basis for deriving an attributed graph, extracted 

from the RDF representation to be used for social 

network, and structural graph theoretic analysis.   

Leveraging both graph formats provides complete 

analytic coverage, and the approach provides a number of 

advantages over conducting two separate forms of analysis 

from two independently constructed graph representations.  

Deriving the attributed graph from the RDF representation 

promotes consistency between the two models from an 

analysis perspective.  All entities and relationships 

analyzed in the attributed graph can be traced back to, and 

analyzed in the RDF graph, without the potential conflicts 

that may occur if the graphs were constructed 

independently.  Anchoring the attributed graph to the RDF 

graph also ensures that the data represented in the 

attributed graph has a standard, widely recognized, model 

representation.  Finally, construction from the RDF 

representation uniformly establishes semantic information 

for the attributed graph, provided by the ontology utilized 

to generate the RDF graph. 

4.1 Attributed graph generation 

At the core of our approach is a methodology for using 

SPARQL queries to define a translation from RDF to 

attributed graphs. To accomplish this translation we define 

two types of SPARQL queries: 

1. Queries that define the attributes of a vertex. 

2. Queries that define relationships between 

vertices. 

The system issues all defined SPARQL queries against 

the RDF store. Every result from a query that defines 

attributes of a vertex are transformed into an attribute on a 

vertex. Similarly, every result from a relationship defining 

query is instantiated as an edge in the attributed graph.  

After all queries have completed, the results are made 

available through an attributed graph API, such as Titan or 

the Blueprints Graph API [9]. 

This approach is tested on a dataset generated using the 

Berlin SPARQL Benchmark generator (“benchmark 
generator”) [10]. This dataset simulates an e-commerce 

use case with products, product features, reviewers, 

reviews, producers, and others.  

We investigate an abstraction that could allow the 

development of an algorithm to examine reviewer’s 
preferences in product features. To accomplish this, our 

abstraction contains three types of entities: reviewers, 

products, and product features. Reviewers are connected 

to product features by an edge if they have reviewed that 

product, and products are connected by an edge to product 

features if they possess that feature. 

The benchmark generator was used to produce a 10,000 

product dataset that also had 10,949 product features and 

100,000 reviews. Each review was authored by one of 

5,152 reviewers. The resulting RDF triple store had 

3,576,172 triples. 

The desired abstraction requires 5 SPARQL queries: 

1. Extract product features as vertices. 

2. Extract product names as attributes of product 

vertices, 

3. Extract reviewer names as attributes of 

reviewer vertices, 

4. Create edges from products to their features, 

and 

5. Create edges from reviewers to reviewed 

products. 

After loading the RDF file, it took a total of 14.1 

seconds to run the above SPARQL queries and produce 

the attributed graph abstraction. All processing was done 

in memory, which was constrained to 3GB. The resulting 

attributed graph contained 26,101 vertices, 78,303 vertex 

attributes, and 291,496 edges each with a single attribute. 

The attributed graph abstraction improves on the 

original RDF representation for answering questions on 

reviewer preference for product features by discarding 

information that was not necessary (producers, vendors, 

etc.) as well as by condensing structural information in the 

graph. The result is a graph that is convenient to work with 
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when answering specific questions. However, because it is 

a specialized abstraction, the resulting attributed graph 

will not be applicable to every question that might be 

asked of the original data. 

4.2 Graph analytics and visualization 

For subsequent graph analyses, we choose to persist the 

attributed graph generated through the SPARQL query 

extraction process in a Titan graph database [11].  

Property keys are created and indexes are defined on the 

attributes for efficient retrieval during the SNA and graph 

theoretic analysis stage. 

The graph that exists within the graph database can be 

classified as a specialized case of an attributed graph 

called a layered multi-modal network [12], containing 

multiple entity and relationship types from layers of 

heterogeneous sources.  These characteristics allow 

layered multimodal network analysis (LMMNA), which 

includes social network and graph theoretic analysis, to be 

performed through a custom graph analysis and 

visualization application. 

The application provides a set of graph visualization 

perspectives—graph filtering, timeline progression, and 

geospatial context visualization—which produce concise, 

interactive renderings of the information originally 

represented in the verbose RDF format.  Additionally, the 

application supplies classic and custom graph analytics 

including centrality measurements, community detection, 

shortest path analysis, graph matching, graph clustering, 

and subgraph generation (e.g. k-hop neighborhood 

derivations).  Applying these analysis techniques to the 

expanded topology of the RDF graph would result in 

inaccurate results, skewed due to extraneous, non-entity 

type vertices being included in the calculation.  For 

example, a simple degree calculation would report entities 

with a large number of attributes as being more central in a 

social network due to these “artificial” connections. 

5 Conclusion 

Attributed graphs and RDF graphs are very similar with 

respect to the type of information that can be expressed.  

The determining factor for graph representation selection 

should be the type of analysis to be performed on the 

graph.  RDF is a highly expressive semantic data model 

that, when paired with a detailed ontology, can capture an 

intricate representation of complex data relations.  RDF 

graphs can be efficiently analyzed through SPARQL 

queries, defining patterns of interest to a high degree of 

precision.  The RDF model is also more suitable for 

representing hierarchical data, where a granular 

breakdown may be necessary.  An example of this would 

be modeling an address, which can be further decomposed 

into the street, city, state/province/territory, and country 

parts.  Each of these concepts can be represented in an 

attributed graph as properties of a vertex, however the 

tiered relationships between these concepts that are 

present in the RDF format are lost. 

The uniform treatment of entities and attributes as 

vertices in an RDF graph result in a generally larger 

topology than with an analogous attributed graph 

representation.  For this reason, attributed graphs excel 

when used for structural graph analysis, where semantic 

data may be leveraged, but is not heavily relied upon (e.g. 

used for context, or filtering).  The condensed 

representation is more fitting for classic social network 

analysis algorithms than the RDF representation, where 

the presence of ancillary attribute vertices will influence 

the computation. 

Capturing the semantic and topological information in a 

single graph abstraction is difficult to do well.  Our 

combined approach overcomes these challenges by 

delegating to each format the tasks for which it is best 

suited.  This strategy has proved initially valuable, 

providing multiple perspectives to derive comprehensive 

results concerning entities and events under investigation. 
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