
RDF Versus Attributed Graphs:

The War for the Best Graph Representation

Michael Margitus

Information Fusion Group

CUBRC Inc.

Buffalo, New York, U.S.A.

Gregory Tauer

Information Fusion Group

CUBRC Inc.

Buffalo, New York, U.S.A.

Moises Sudit

Information Fusion Group

CUBRC Inc.

Buffalo, New York, U.S.A.

Abstract – In this work, methods are developed to

overcome the inherent problems of network abstraction

and analysis from multiple heterogeneous data sources.

RDF and attributed graphs are two common choices for

graph modeling. While both are very similar with

respect to the type of information that can be

represented, characteristics intrinsic to each

representation affect the analysis performed over the

resultant network abstractions. By selecting a dual

graph representation approach and leveraging the

strengths of both models, the semantic analysis

performed over RDF graphs is combined with the

topological analysis applied to attributed graphs, to

produce a comprehensive foundation for network

analysis that cannot be easily achieved, nor its value

matched, by one representation independently.

Keywords: Graphs, RDF, attributed graphs, network

abstraction, data alignment.

1 Introduction

Networks are quickly becoming the de facto

representation choice for modeling real world data

involving entities and relationships. A network model

provides more flexibility over traditional relational data

models, and does not require a predefined schema or

consistent data keys across each entry of the same type.

These criteria are especially important when modeling

data that evolves over time, data containing complex

relations, or data that has the potential for a multitude of

query perspectives.

The process of creating a network abstraction, and

analyzing the resultant network is challenging for a

number of reasons. Representing entities and relationships

from raw data sources as a network in a pragmatic manner;

the inability to capture details found in descriptive data

through a network representation; and the process of

normalizing data to a common structure across data sets or

related networks are all factors that, if done poorly, may

result in an incomplete and inaccurate analysis network,

ultimately leading to incorrect conclusions and results.

Given the increased amount of disparate data required to

make timely and informed decisions, a plethora of

research is being conducted in the areas of network

abstraction and analysis. At the forefront of this area is the

objective to produce automated methods for aligning and

constructing a network model from heterogeneous, yet

related, data sets in order to assess and harvest

information.

The choice of network representation is an important

decision. Networks are ubiquitously represented as

graphs, a finite nonempty set of objects called vertices,

together with a set of pairs of distinct vertices called edges

[1], however the structure of these graphs, and the varied

ways a single data set can be represented as a graph leaves

much to consider. Two popular graph topologies are the

representation provided by utilizing the Resource

Description Framework (RDF) data model, and graphs

produced by following an attributed graph model.

Although each format can represent the same information,

each also has inherent advantages and disadvantages when

used as the underpinnings of network analysis.

In this work, we develop methods to address the

inherent problems of network abstraction and analysis

from real-world data by using both representations. We

begin by building an RDF knowledge graph that provides

a complete and detailed representation of the data sets

under investigation. The RDF representation is well

suited to this task since it is expressive, closely linked to

knowledge representation tools, and standards based.

Unfortunately, the resulting RDF representation can be

poorly suited to perform traditional network analysis due

to its structure. To overcome this shortcoming, we

abstract the RDF graph to an attributed graph through an

approach that uses the SPARQL query language in an

extraction process, capturing the key entities, events, and

relationships relevant to analysis. We then describe the

application of graph and social network analytics on the

attributed graph abstraction, which cannot be directly

applied to the RDF knowledge graph, to derive valuable

results concerning the entities and events under

observation.

In the remainder of this paper, we discuss each of the

graph models in detail along with our rational for using

RDF for the master knowledge graph and attributed graphs

for the network abstractions that we perform analysis on.

(Section 2). Section three describes related approaches

18th International Conference on Information Fusion
Washington, DC - July 6-9, 2015

978-0-9964527-1-7©2015 ISIF 200

and how they differ from our strategy. In section 4, we

discuss our approach to perform network abstraction and

analysis utilizing both RDF and attributed graph formats.

Section 5 concludes our discussion with observations,

findings and recommendations.

2 Graph abstraction models

In this section we present two common graph

representation paradigms, RDF and attributed graphs.

Although both graph formats can represent the same

content each format has its own strengths to offer.

2.1 RDF

RDF is a model of assigning named properties and

values to objects [2]. The RDF model contains 3 sets:

Resources, Literals, and Statements. Each statement is a

triple of {subject, predicate, object} where a predicate is a

special type of resource. Each statement defines a triple

that represents a single directed edge within an RDF

graph, with the subject (a resource) representing the

source vertex, the property representing an edge label, and

the object (either a resource or literal value) representing

the target vertex. In this way, RDF statements express

directed labeled graphs [2,3].

Importantly, the subject of a statement must be a

resource, while the object may be either a resource or a

literal value (such as a string, integer, date, etc.). Literal

values may not be the origin of statements, which allows

for literal statements in RDF to model vertex attributes

from attributed graphs [4].

RDF graphs excel in conceptual modeling and

knowledge representation applications where the

expressivity of the format can be leveraged to describe

complex relationships and characteristics among existing

resources. When concept representation is formalized, for

example by an ontology, data can be represented

according to the constructs outlined to produce a

normalized RDF graph model. RDF is a popular format

for ontological modeling, in part due to the designation of

the Web Ontology Language (OWL) as a W3C standard

[5].

RDF enables analysis to be performed by exploring the

model through query interactions. This exploration is

made more powerful through the use of an ontology, or a

composition of ontologies, to model the objects and

relationships found within the data. This facilitates

network analysis from an information retrieval

perspective. The standard RDF query language is

SPARQL [6]. The SPARQL query language for retrieving

information from RDF data seeks to find a subgraph

pattern match given a pattern defined by the query, and the

RDF data graph to search over. Through SPARQL,

specific patterns of interest can be discovered. Although a

powerful query tool, subgraph matching itself gives

limited insight into the overall structure of the graph,

including the global importance/centrality of entities.

We focus on RDF models of large and expressive

knowledge graphs. The verbose structure of this type of

graph makes analysis by classical graph analysis

algorithms challenging. This is especially true when data

is expressed following a detailed representation. In

knowledge representation graphs, the vertices defined can

represent a wide variety of objects, not just the types of

Figure 1. Semantic content represented as an RDF graph (left), and an attributed graph (right).

Figure 2. Attributes of attributes, represented in an

RDF graph.

201

Table 1 : Comparison of RDF and Attributed Graphs

RDF Attributed Graphs

The RDF model requires only triples to be stored. Objects to be stored depend on the specific

implementation.

RDF is a W3C standard, including supporting tools such as

SPARQL and OWL.

There is no well-established standards committee

resulting in multiple implementations.

RDF clearly defines a set of exchange formats that all

databases are expected to support.

It is not easy to transfer data between databases without

support for a common exchange format.

Since RDF is a standard, all API implementations follow the

same basic model.

Multiple implementations results in confusion between

the model, API, and database.

RDF only supports directed graphs. Attributed graphs can support both directed and

undirected graphs.

Edges in RDF only support a single label (the predicate). In

some cases, this can lead to complex reification schemes to

make statements about a statement.

Edges in an attributed graph can have attributes just like

vertices. This allows for the representation of

information about the relationships.

Attribute information is stored as triples, leading to more

triples than an equivalent attributed graph representation.

Attribute information can be efficiently stored as

key/value pairs on the graph elements.

objects that a given graph analytic is interested in. Without

filtering criteria at the analytic level, or an extraction of

the desired subgraph of vertex and relationship types, all

vertex types will be considered by automated analysis

algorithms. If, for example, there is a desire to calculate

betweenness centrality across all entities of a given type,

applying a traditional implementation of the algorithm

directly to the RDF knowledge graph will result in

unintended properties, entities, and relationships being

included within the calculation. This will impact the

interpretation of the results. To avoid this side effect, a

filtering technique could be applied to extract only the

desired entities and relationship types. If done directly on

the knowledge graph, this risks a loss of information from

the removal of properties/attributes which may be required

during further analysis.

2.2 Attributed graphs

An attributed graph G = {V, E, Av, Ae} is defined by a

nonempty set of vertices V, a set of edges E (directed,

undirected, or a combination), a set of attributes on the

vertices Av, and a set of attributes on the edges Ae. The

attributed data represented within the graph exists

separately from the graph structure itself, with attributes

present on each vertex and edge. This network

representation is in contrast to RDF graphs, where vertices

and attributes are treated uniformly, leading to a

significant increase in size in the graph topology [7].

We are primarily interested in attributed graphs where

the attributes of graph elements are represented as

key/value stores. Such graphs are often referred to as

“property graphs”.
Attributed graph models permit a more condensed

representation from a visual, analytical, and traversal

standpoint. Although literal statements in RDF achieve a

similar goal as attributes in an attributed graph, the

attributed representation can efficiently encode the

key/value pairs [4]. Figure 1 illustrates two graphs

representing the same content. The graph on the left is an

RDF representation of novel, its publisher, attributes of

each, and the relationship between the two. A total of

eight vertices and seven edges are created to represent this

information as an RDF graph. In contrast, an attributed

graph representation (Figure 1, right) can be constructed

with two vertices and a single edge, with each graph

element having its own set of attributes to detail the

semantic data.

A drawback of the attributed graph model is the risk that

it may be used to model information in a way that restricts

expressiveness. A good example of this is the problem of

representing attributes of attributes, such as a valid time

period of an address, cannot be easily represented in the

above attributed graph model, but can be achieved in the

example RDF graph by adding additional edges and

vertices incident and adjacent, respectively, to an address

vertex, illustrated in Figure 2.

202

In general, the attributed graph model tends to promote

a condensed, streamlined topology that requires less

storage, and is more tailored toward structural graph

analysis, such as social network analysis algorithms.

2.3 Summary of Comparison

To summarize the above comparison of RDF and

attributed graphs: they can both model the same

information in nearly the same way, but each has

advantages. A high level overview of these advantages is

presented in Table 1. Based on this overview, our

recommendation for using RDF vs Attributed Graphs is:

Prefer to use RDF for:

 Large knowledge graphs that require rich expressiveness

and a foundational ontology. RDF is standards based

which is important for knowledge graphs since they

often need to be shared. There are many tools built

around RDF for knowledge modeling (OWL, etc.) Graph data that must be queried for specific subgraphs.

RDF can be queried using SPARQL, which is a

standards based, full featured query language for

RDF.

Prefer attributed graphs for:

 Graphs that need to be queried for elements possessing

specific attribute values. Attributed graphs efficiently

store attribute values as key/value pairs on the graph

elements. This brings both efficiency and conceptual

advantages for indexing elements by their attributes. Graphs that need to be visualized. It is often easier to

render attribute information as a table than as vertices

and edges. Prototyping and simple applications that will not need to

be shared. Subjectively, attributed graph models tend

to be easier to work with than RDF from an

implementation perspective. This can save time when

building prototypes and can make applications easier

to maintain.

3 Related work

Related work develops a methodology for storing

attributed graphs in RDF triple stores [4]. This related

work describes how attributes can be expressed as literal

statements and edge attributes can be encoded using

reification in RDF.

The concept of semantic social network analysis [8]

attempts to take social network algorithms and heuristics

ordinarily executed over a traditional entity-relation graph

and modify those algorithms so that they can be applied to

an RDF formatted graph. The goal is to leverage semantic

web technologies to merge and exploit the most valuable

features from the domains of social network analysis and

the semantic web. Algorithms executed over RDF allows

for the preservation and possible utilization of the

semantic information found within the data, particularly

the typed relations that exist, while at the same time

providing the ability to analyze the structure of the graph

and interaction between entities to gain valuable insight,

for example, the most influential player in the network.

Accomplishing the objective of semantic social network

analysis requires each social network algorithm or

heuristic to be implemented as a SPARQL query. Starting

with an RDF social graph, SPARQL extensions are

utilized to extract an RDF-subgraph from the RDF based

on defined resources or property types. One or more

SPARQL queries analogous to traditional SNA metrics are

then applied to the subgraph. For a subset of algorithms,

post processing is required.

This method has advantages over the strategy of

applying SNA to RDF graphs by extracting a raw, i.e.

untyped, graph of one or more relationship types from the

RDF graph. From the semantic social network analysis

perspective, too much knowledge is lost in this extraction

which could otherwise be used for filtering and

customizing results. In general, extractions of this form

reduce the expressivity of the social network

representations to simple un-typed graphs [8].

Our dual graph representation approach, discussed in

the subsequent section, addresses the issues intrinsic to an

untyped graph extraction from RDF. By leveraging

attributed graphs, we are able to keep necessary semantic

information intact, preserving entity and relationship

types, as well as other useful attributes for each vertex and

edge in the graph. Additionally, unlike the RDF-based

Figure 3. Overview of two graph representation

approach.

203

semantic social network analysis approach, the attributed

graph format mirrors a typical entity-relation graph

representation, and thus there is no need to create new

implementations of traditional SNA centrality and

community detection algorithms in order to apply them to

the network.

4 A two graph approach

Each of the previously introduced graph formats have

the capacity to represent the same, or very similar network

and semantic content. Format selection, however, should

be a cautious decision dependent on the type of analysis to

be performed on the network data, with each graph model

possessing its own analytic strengths and weaknesses.

Proper structural and semantic network analysis can be

more easily achieved by using multiple formats,

leveraging the strengths of each format to divide and drive

the investigation. To this end, we have chosen a two

graph representation approach, sacrificing increased

storage costs for an improvement in the flexibility and

quality of analysis.

At a high level our approach follows as depicted in

Figure 3. Given multiple heterogeneous data sets, we seek

to create and analyze a normalized common graphical

model. To construct this model, we begin with an

ontological alignment process to homogenize all available

data from the raw data sources. The product of this

process is an all-encompassing RDF knowledge graph,

created for two purposes. First, the RDF graph captures

all available knowledge at a detailed level and is the

foundation for all further analysis. Utilizing the detailed

data representation of the aligned RDF graph, SPARQL

queries can be issued for targeted information retrieval

and initial exploratory analysis. Secondly, this graph acts

as the basis for deriving an attributed graph, extracted

from the RDF representation to be used for social

network, and structural graph theoretic analysis.

Leveraging both graph formats provides complete

analytic coverage, and the approach provides a number of

advantages over conducting two separate forms of analysis

from two independently constructed graph representations.

Deriving the attributed graph from the RDF representation

promotes consistency between the two models from an

analysis perspective. All entities and relationships

analyzed in the attributed graph can be traced back to, and

analyzed in the RDF graph, without the potential conflicts

that may occur if the graphs were constructed

independently. Anchoring the attributed graph to the RDF

graph also ensures that the data represented in the

attributed graph has a standard, widely recognized, model

representation. Finally, construction from the RDF

representation uniformly establishes semantic information

for the attributed graph, provided by the ontology utilized

to generate the RDF graph.

4.1 Attributed graph generation

At the core of our approach is a methodology for using

SPARQL queries to define a translation from RDF to

attributed graphs. To accomplish this translation we define

two types of SPARQL queries:

1. Queries that define the attributes of a vertex.

2. Queries that define relationships between

vertices.

The system issues all defined SPARQL queries against

the RDF store. Every result from a query that defines

attributes of a vertex are transformed into an attribute on a

vertex. Similarly, every result from a relationship defining

query is instantiated as an edge in the attributed graph.

After all queries have completed, the results are made

available through an attributed graph API, such as Titan or

the Blueprints Graph API [9].

This approach is tested on a dataset generated using the

Berlin SPARQL Benchmark generator (“benchmark
generator”) [10]. This dataset simulates an e-commerce

use case with products, product features, reviewers,

reviews, producers, and others.

We investigate an abstraction that could allow the

development of an algorithm to examine reviewer’s
preferences in product features. To accomplish this, our

abstraction contains three types of entities: reviewers,

products, and product features. Reviewers are connected

to product features by an edge if they have reviewed that

product, and products are connected by an edge to product

features if they possess that feature.

The benchmark generator was used to produce a 10,000

product dataset that also had 10,949 product features and

100,000 reviews. Each review was authored by one of

5,152 reviewers. The resulting RDF triple store had

3,576,172 triples.

The desired abstraction requires 5 SPARQL queries:

1. Extract product features as vertices.

2. Extract product names as attributes of product

vertices,

3. Extract reviewer names as attributes of

reviewer vertices,

4. Create edges from products to their features,

and

5. Create edges from reviewers to reviewed

products.

After loading the RDF file, it took a total of 14.1

seconds to run the above SPARQL queries and produce

the attributed graph abstraction. All processing was done

in memory, which was constrained to 3GB. The resulting

attributed graph contained 26,101 vertices, 78,303 vertex

attributes, and 291,496 edges each with a single attribute.

The attributed graph abstraction improves on the

original RDF representation for answering questions on

reviewer preference for product features by discarding

information that was not necessary (producers, vendors,

etc.) as well as by condensing structural information in the

graph. The result is a graph that is convenient to work with

204

when answering specific questions. However, because it is

a specialized abstraction, the resulting attributed graph

will not be applicable to every question that might be

asked of the original data.

4.2 Graph analytics and visualization

For subsequent graph analyses, we choose to persist the

attributed graph generated through the SPARQL query

extraction process in a Titan graph database [11].

Property keys are created and indexes are defined on the

attributes for efficient retrieval during the SNA and graph

theoretic analysis stage.

The graph that exists within the graph database can be

classified as a specialized case of an attributed graph

called a layered multi-modal network [12], containing

multiple entity and relationship types from layers of

heterogeneous sources. These characteristics allow

layered multimodal network analysis (LMMNA), which

includes social network and graph theoretic analysis, to be

performed through a custom graph analysis and

visualization application.

The application provides a set of graph visualization

perspectives—graph filtering, timeline progression, and

geospatial context visualization—which produce concise,

interactive renderings of the information originally

represented in the verbose RDF format. Additionally, the

application supplies classic and custom graph analytics

including centrality measurements, community detection,

shortest path analysis, graph matching, graph clustering,

and subgraph generation (e.g. k-hop neighborhood

derivations). Applying these analysis techniques to the

expanded topology of the RDF graph would result in

inaccurate results, skewed due to extraneous, non-entity

type vertices being included in the calculation. For

example, a simple degree calculation would report entities

with a large number of attributes as being more central in a

social network due to these “artificial” connections.

5 Conclusion

Attributed graphs and RDF graphs are very similar with

respect to the type of information that can be expressed.

The determining factor for graph representation selection

should be the type of analysis to be performed on the

graph. RDF is a highly expressive semantic data model

that, when paired with a detailed ontology, can capture an

intricate representation of complex data relations. RDF

graphs can be efficiently analyzed through SPARQL

queries, defining patterns of interest to a high degree of

precision. The RDF model is also more suitable for

representing hierarchical data, where a granular

breakdown may be necessary. An example of this would

be modeling an address, which can be further decomposed

into the street, city, state/province/territory, and country

parts. Each of these concepts can be represented in an

attributed graph as properties of a vertex, however the

tiered relationships between these concepts that are

present in the RDF format are lost.

The uniform treatment of entities and attributes as

vertices in an RDF graph result in a generally larger

topology than with an analogous attributed graph

representation. For this reason, attributed graphs excel

when used for structural graph analysis, where semantic

data may be leveraged, but is not heavily relied upon (e.g.

used for context, or filtering). The condensed

representation is more fitting for classic social network

analysis algorithms than the RDF representation, where

the presence of ancillary attribute vertices will influence

the computation.

Capturing the semantic and topological information in a

single graph abstraction is difficult to do well. Our

combined approach overcomes these challenges by

delegating to each format the tasks for which it is best

suited. This strategy has proved initially valuable,

providing multiple perspectives to derive comprehensive

results concerning entities and events under investigation.

References

[1] G. Chartrand and L. Lesniak, Graphs & Digraphs, 4th

ed. Boca Raton, FL: Chapman & Hall/CRC, 2005, ch. 1,

pp. 1.

[2] Resource Description Framework (RDF) Model and

Syntax Specification [Online]. Available:

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[3] Hayes, Jonathan. "A graph model for RDF." Diploma

thesis, Technische Universit ࡇat Darmstadt Universidad de
Chile, 2004.

[4] S. Das et al., “A Tale of Two Graphs: Property Graphs
as RDF in Oracle,” in Proc. Of 17th International

Conference on Extending Database Technology, Athens,

Greece, 2014.

[5] OWL: Semantic Web Standards [Online]. Available:

http://www.w3.org/2001/sw/wiki/OWL

[6] E. Prud’hommeaux, A. Seaborne. (2008) “SPARQL
Query Language for RDF” [Online]. Available:

http://www.w3.org/TR/rdf-sparql-query/

[7] S. Sakr, S. Elnikety, and Y. He. “G-SPARQL: A

Hybrid Engine for Querying Large Attributed Graphs,” In

CIKM ’12, Oct 29 – Nov 2.

[8] Ereteo, G., Gandon, F. L., Corby, O., Buffa, M.:

“Semantic social network analysis”; CoRR; abs/0904.3701
(2009).

205

[9] The benefits of Blueprints [Online]. Available:

https://github.com/tinkerpop/blueprints/wiki/The-Benefits-

of-Blueprints

[10] C. Bizer and A. Schultz. “The berlin sparql

benchmark”. International Journal on Semantic Web and

Information Systems, vol. 5, 1-24, 2009.

[11] Titan: Distributed Graph Database [Online].

Available: http://thinkaurelius.github.io/titan/

[12] P. LaMonica, T. Waskiewicz, “Layered multi-modal

network analysis of textual data for improved situation

awareness,” In Proc. International Conference of

Knowledge Engineering (IKE), July 2011.

206

