Semantic Hierarchies in Knowledge Analysis and Integration

Cliff Joslyn

Los Alamos National Laboratory

Information Sciences Group

DIMACS Workshop on Recent Advances in Mathematics and Information Sciences for Analysis and Understanding of Massive and Diverse Sources of Data
May 2007
OUTLINE

• The challenge of semantic information for knowledge systems

• Large computational ontologies
 – Analysis
 – Induction
 – Interoperability

• Order theoretical approaches
 – Ontology analysis
 – Concept lattices: Formal Concept Analysis
APPLICATION CHALLENGES

Decision Support: Military, intelligence, disaster response

Intelligence Analysis: Multi-Int integration: IMINT, HUMINT, SIGINT, MASINT, etc.

Biomedicine: Biothreat response

Defense Applications: Defense transformation, situational awareness, global ISR

Bibliometrics: Digital libraries, retrieval and recommendation

Simulation: Interaction with knowledge management/decision support environments

Nonproliferation: “Ubiquitous sensing”, information fusion
KNOWLEDGE SYSTEMS

- Challenge for database integration at the knowledge level:
 Connectivity: Wiring everything up, everything accessible
 Interoperability: Knowing what you have and where it is
- Complement quantitative statistical techniques with qualitative methods:
 - Knowledge representation, natural language processing
 - Search, retrieval, inference
 - Focus on the meaning (semantics) of information in databases: use, interpretation
- In conjunction with existing capabilities in data mining, machine learning, sensor technology, simulation, etc.
 - Knowledge-based and data-rich sciences: Biology, astronomy, earth science
 - Knowledge-based technologies for national security: Decision support, intelligence analysis
 - Knowledge-based technologies supporting the scientific process: Semantic web, digital libraries, publication process, communities of networked scientists

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 3, 5/14/2007
MULTI-MODAL DATA FUSION

• Qualitative difference:

Sensors:
 – Physics sensors: nuclear, radiological, chemical
 – Electromagnetic spectrum
 – Acoustic, seismic
 – Images, video

Information Sources:
 – Geospatial
 – Structured and semi-structured data
 – Relational databases
 – Text, documents
 – Plans, scenarios

• How to bridge?
 – Meta-data
 – Feature extraction from signals, images
 – Feature ontologies and interoperability protocols

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 4, 5/14/2007
Semantic Hierarchies for Knowledge Systems

- Representations of *semantic* and *symbolic* information
- Approach from *mathematical systems theory*:
 - Discrete math, combinatorics, information theory
 - Metric geometry approach to order theory (lattices and posets)
- *Hybrid* methodologies combining statistical, numerical, and quantitative with symbolic, logical, and qualitative
- **Ontologies and Conceptual Semantic Systems:** Discrete mathematical approaches
- **Computational Linguistics and Lexical Semantics:** For natural language processing and text extraction
- **Database Analysis:** User-guided knowledge discovery in complex, multi-dimensional data spaces
- **Software Architectures:** Parallel and high performance algorithms

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 5, 5/14/2007
PARADIGM: SEMANTIC NETWORKS

- Lattice-labeled directed multi-graphs
- Increasing size and prominence for databases: Intelligence analysis, law enforcement, computational biology

Challenges: Typed-link network theory; morphisms of typed graphs; ontology analysis, induction, and interoperability.

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 6, 5/14/2007
REASONING WITHIN ONTOLOGIES FOR THE SEMANTIC WEB

- Proposed basis for Semantic Web
- Ontological database: interacting hierarchies of objects and relations

- Semantic relations valued on objects
- Description-logic queries

Who was the last president before Clinton to visit Vietnam?

\[(\text{Name(By))} \land (\text{Trip}(x) \land \text{To:Vietman, By:President-of-the-USA}) \land \text{lub}(\text{When}(x) < 1992) \]

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 7, 5/14/2007
BIO-ONTOLOGIES

- Domain-specific concepts, together with how they’re related semantically
- Crushing need driven by the genomic revolution
- **At least:**
 - Large terminological collections (controlled vocabularies, lexicons)
 - Organized in taxonomic, hierarchical relationships
- **Sometimes in addition:** Methods for inference over these structures
- Molecular, anatomy, clinical, epidemiological, etc.:
 - **Gene Ontology:** Molecular function, biological process, cellular location
 - **Fundamental Model of Anatomy**
 - **Unified Medical Language System:** National Library of Medicine, meta-thesaurus
 - **Open Biology Ontologies**
 - **MEdical Subject Headings (MeSH)**
 - **Enzyme Structures Database:** EC numbers
GENE ONTOLOGY (GO): DNA METABOLISM PORTION

- Taxonomic controlled vocabulary
- ~20K nodes populated by genes, proteins
- Two orders $\leq isa, \leq has$
- Major community effort: assuming primary position in general bioinformatics

- Tremendous computational resource: large, semantically rich, validated, middle ontology, first (?) in major use

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 9, 5/14/2007
CATEGORIZATION IN THE GENE ONTOLOGY

http://www.c3.lanl.gov/posoc

- Develop functional hypotheses about hundreds of genes identified through expression experiments
- Given the Gene Ontology (GO) ...
- And a list of hundreds of genes of interest ...
- “Splatter” them over the GO ...
- Where do they end up?
 - Concentrated?
 - Dispersed
 - Clustered?
 - High or low?
 - Overlapping or distinct?
- POSet Ontology Categorize (POSOC)

WHOLE GO CA. 2001

Courtesy of Robert Kueffner, NCGR, 2001

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 11, 5/14/2007
GO PORTION, HIERARCHICAL EYECHART
HIERARCHIES AS PARTIALLY ORDERED SETS

- **Partial Order**: Set P; relation $\leq \subseteq P^2$: reflexive, anti-symmetric, transitive
- **Poset**: $\mathcal{P} = \langle P, \leq \rangle$
- Simplest mathematical structures which admit to descriptions in terms of “levels” and “hierarchies”
- More specific than graphs or networks: no cycles, equivalent to Directed Acyclic Graphs (DAGs)
- More general than trees, lattices: single nodes, pairs of nodes can have multiple parents
- Ubiquitous in knowledge systems: constructed, induced, empirical

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 13, 5/14/2007
BASIC POSET CONCEPTS

Poset: $\mathcal{P} = \langle P, \leq \rangle$

Comparable Nodes: $a \sim b := a \leq b$ or $b \leq a$

Up-Set: $\uparrow a = \{ b \geq a \}$, Down-Set: $\downarrow a = \{ b \leq a \}$

Chain: Collection of comparable nodes: $a_1 \leq a_2 \leq \ldots \leq a_n$

Height: Size maximal chain $\mathcal{H}(\mathcal{P})$

Noncomparable Nodes: $a \not\sim b$

Antichain: Collection of noncomparable nodes: $A \subseteq P, a \not\sim b, a, b \in A$

Width: Size maximal antichain $\mathcal{W}(\mathcal{P})$

Interval: $[a, b] := \{ c \in P : a \leq c \leq b \}$, a bounded sub-poset of \mathcal{P}

Join, Meet: $a \vee b, a \wedge b \subseteq P$

Lattice: Then $a \vee b, a \wedge b \in P$

Bounded: Min 0 $\in P$, Max 1 $\in P$

Schröder, BS (2003): Ordered Sets, Birkhäuser, Boston

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 14, 5/14/2007
SOME GO QUANTITATIVE MEASURES

<table>
<thead>
<tr>
<th></th>
<th>Nodes</th>
<th>Leaves</th>
<th>Interior</th>
<th>Edges</th>
<th>\mathcal{H}</th>
<th>\mathcal{W}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF</td>
<td>7.0K</td>
<td>5.6K</td>
<td>1.3K</td>
<td>8.1K</td>
<td>13 ≥ 3.5K</td>
<td></td>
</tr>
<tr>
<td>BP</td>
<td>7.7K</td>
<td>4.1K</td>
<td>3.6K</td>
<td>11.8K</td>
<td>15 ≥ 2.9K</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>1.3K</td>
<td>0.9K</td>
<td>0.4K</td>
<td>1.7K</td>
<td>13 ≥ 0.4K</td>
<td></td>
</tr>
<tr>
<td>GO</td>
<td>16.0K</td>
<td>10.6K</td>
<td>5.4K</td>
<td>21.5K</td>
<td>16 ≥ 5.9K</td>
<td></td>
</tr>
</tbody>
</table>

Joslyn, Cliff; Mniszewski, SM; Verspoor, KM; and JD Cohn: (2005) “Improved Order Theoretical Techniques for GO Functional Annotation”, poster at 2005 Conf. on Intelligent Systems for Molecular Biology (ISMB 05)

CHAIN DECOMPOSITION OF INTERVALS

Comparable Nodes: e.g. $D \leq 1 \in P$

Chain Decomposition: Set of all chains connecting them:

$$C(D, 1) = \{C_j\} = \{D \prec E \prec I \prec B \prec 1, D \prec E \prec I \prec C \prec 1, D \prec E \prec K \prec 1, D \prec J \prec C \prec 1, D \prec J \prec K \prec 1\} \subseteq 2^P$$

Chain Lengths: $h_j := |C_j| - 1$

Vectors of Chain Lengths:

$$\vec{h}(a, b) := \langle h_j \rangle_{j=1}^M = \langle 4, 4, 3, 3, 3 \rangle$$

Extremes:

$$h_*(a, b) = \min_{h_j \in \vec{h}(a, b)} h_j = 3$$

$$h^*(a, b) = \max_{h_j \in \vec{h}(a, b)} h = 4$$

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 16, 5/14/2007
• Interval valued vertical position (rank)
• Chain decomposition guides horizontal: short maximal chains to outside

CATEGORIZATION METHOD

- **POSO**: POSet Ontology
 \[\mathcal{O} := \langle P, X, F \rangle, \quad P = \langle P, \leq \rangle \]
- **Labels**: finite, non-empty set \(X \)
- **Labeling Function**: \(F: X \mapsto 2^P \)
- Given labels (genes) \(c, e, i \ldots \)
- What node(s)
 \[P = \{ A, B, C, \ldots, K \} \] are best to pay attention to?

- Scores to rank-order nodes wrt/gene locations, balancing:
 - **Coverage**: Covering as many genes as possible
 - **Specificity**: But at the “lowest level” possible
- “Cluster” based on non-comparable high score nodes

AUTOMATED ONTOLOGICAL PROTEIN FUNCTION ANNOTATION

- Mappings among regions of biological spaces . . .
- . . . into spaces of biological functions
- POSOC annotated BLAST neighborhoods of new proteins
- How to measure quality of inferred annotations?

Verspoor, KM; Cohn, JD; Mniszewski, SM; and Joslyn, CA: (2006) “Categorization Approach to Automated Ontological Function Annotation”, *Protein Science*, v. 15, pp. 1544-1549

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 19, 5/14/2007
HIERARCHICAL EVALUATION METRICS

- Hierarchical measures:

 Precision:
 \[
 HP = \frac{1}{|G(x)|} \sum_{b \in G(x)} \max_{a \in F(x)} \frac{|\uparrow a \cap \uparrow b|}{|\uparrow b|}
 \]

 Recall:
 \[
 HR = \frac{1}{|F(x)|} \sum_{a \in F(x)} \max_{b \in G(x)} \frac{|\uparrow a \cap \uparrow b|}{|\uparrow a|}
 \]

 F-Score:
 \[
 HF = \frac{2(HP)(HR)}{HP + HR}
 \]

- Example: \(F(x) = \{\text{GO:4}\}, G(x) = \{\text{GO:6}\}\)
 \(\uparrow a = \{\text{GO:1, GO:2, GO:4}\}, \uparrow b = \{\text{GO:1, GO:2, GO:3, GO:5, GO:6}\}\)
 \(HP = 2/5, HR = 3/5\)

Verspoor, KM; Cohn, JD; Mniszewski, SM; and Joslyn, CA: (2006) “Categorization Approach to Automated Ontological Function Annotation”, *Protein Science*, v. 15, pp. 1544-1549

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 20, 5/14/2007
SEMANTIC SIMILARITIES

Poset $\mathcal{P} = \langle P, \leq \rangle$, probability distribution

$p: P \rightarrow [0, 1], \sum_{a \in P} p(a) = 1$, “cumulative” $\beta(a) := \sum_{b \leq a} p(a)$

Resnik: $\delta(a, b) = \max_{c \in a \lor b} [-\log_2(\beta(c))]$

Lin:

$$\delta(a, b) = \frac{2 \max_{c \in a \lor b} [\log_2(\beta(c))] }{ \log_2(\beta(a)) + \log_2(\beta(b)) }$$

Jiang and Conrath:

$$\delta(a, b) = 2 \max_{c \in a \lor b} [\log_2(\beta(c))] - \log_2(\beta(a)) - \log_2(\beta(b))$$

Issues:

- General mathematical grounding in poset metrics
- Not rely on probabilistic weighting

Lord, PW; Stevens, Robert; Brass, A; and Goble, C: (2003) “Investigating Semantic Similarity Measures Across the Gene Ontology: the Relationship Between Sequence and Annotation”, *Bioinformatics*, v. 10, pp. 1275-1283
Assume \(\langle P, \leq \rangle \) finite, connected, bounded

\[
aub := \uparrow a \cap \uparrow b, \quad alb := \downarrow a \cap \downarrow b
\]

Isotone Map: \(v: P \rightarrow \mathbb{R}, a \leq b \rightarrow v(a) \leq v(b) \)

\[
v^+(a, b) := \min_{w \in aub} v(w)
\]

\[
(aub)_v := \{ w \in P : v(w) = v^+(a, b) \}
\]

Upper Valuation: \(\forall z \in alb, \)

\[
v(a) + v(b) \geq v^+(a, b) + v(z)
\]

Distance: \(v \) is an upper valuation iff

\[
d(a, b) := 2v^+(a, b) - v(a) - v(b)
\]

is a distance (triangle inequality)

<table>
<thead>
<tr>
<th>(z \in alb)</th>
<th>(z \in aub)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isotone</td>
<td>(v(a) + v(b) \geq v^+(a, b) + v(z))</td>
</tr>
<tr>
<td></td>
<td>(d(a, b) = 2v^+(a, b) - v(a) - v(b))</td>
</tr>
<tr>
<td>Antitone</td>
<td>(v(a) + v(b) \leq v^+(a, b) + v(z))</td>
</tr>
<tr>
<td></td>
<td>(d(a, b) = v(a) + v(b) - 2v^+(a, b))</td>
</tr>
</tbody>
</table>

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 22, 5/14/2007
SOME LATTICE METRICS

Information Theoretical: Monotone upper valuation

- Let \(v(a) = \beta(a) \), "cumulative" probability
- **Proposition:** Jiang and Conrath is a metric, others are not

 - \(d(a, b) = 2\beta(a \lor b) - \beta(a) - \beta(b) \)

 - \(d(I, J) = 1.53, d(E, J) = 1.64 \)

Purely Structural: Antitone upper valuation

- \(|\uparrow a \cap \uparrow b| = |\uparrow(a \lor b)|, \)

 - \(|\downarrow a \cap \downarrow b| = |\uparrow(a \land b)| \)
- Let \(v(a) = |\uparrow a| \)
- \(d(a, b) = |\uparrow a| + |\uparrow b| - 2|\uparrow a \cap \uparrow b| \)
- \(d(I, J) = 4, d(E, J) = 6 \)

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 23, 5/14/2007
INTEROPERABILITY AND ALIGNMENT

Matching: Measure similarity between two regions of a single ontology

Comparing: Twist one ontology on a given term set into another ordering

Merging: Given two completely distinct ontologies:
- Identify structurally similar regions: intersection
- Create encompassing meta-ontologies: product or union?

ALIGNMENT METHODS

Ultimate Goal: Construct order morphisms
Neighborhoods: Around given anchors
Lexical: Matches
Structural: Nodes playing similar structural roles
Combinatorial: Sets of nodes playing similar structural roles
Poset Metrics: Measure candidate alignment, suggest new anchors
FORMAL CONCEPT ANALYSIS

- Semantic hierarchies from relational data
- Unbiased, graphical, visual representation
- Hypothesis and rule generation and evaluation
- For ontology induction, interoperability

• \(\{g_1, g_2, g_3\}\): annotated into an ontology \(O\):

• \(\{g_2, g_3, g_4\}\): annotated to keywords \(K = \{k_1, k_2, k_3\}\)

• Induce order on \(K\) while incorporating order on \(O\)

• Amenable to metric treatment of attributes, objects

ACKNOWLEDGEMENTS, COLLABORATIONS, AND OTHER ASSORTED NAME-DROPPIING

LANL Info. Sciences:
 • Susan Mniszewski
 • Chris Orum
 • Karin Verspoor
 • Michael Wall

LANL Elsewhere:
 • Judith Cohn
 • Bill Bruno
 • Steve Smith

U. West Indies:
 • Jonathan Farley

PNNL: Joe Oliveira

U. Newcastle: Phillip Lord

NCGR: Damian Gessler

Technische Universität Dresden:
 • Stephan Schmidt
 • Tim Kaiser
 • Bjoern Koester

New Mexico State U.:
 • Alex Pogel

P&G: Andy Fulmer

Stanford Medical Informatics:
 • Natasha Noy

Cliff Joslyn, joslyn@lanl.gov
dimacs07fa, p. 28, 5/14/2007