URSW'2011

An Evidential Approach for Modeling and Reasoning on Uncertainty in Semantic Applications

Amandine Bellenger^{1,2}, Sylvain Gatepaille¹ Habib Abdulrab², Jean-Philippe Kotowicz²

¹Information Processing, Control & Cognition Department Cassidian, Val de Reuil, France

² LITIS Laboratory INSA de Rouen, Saint-Étienne du Rouvray, France

Introduction - Context

Basis of Dempster-Shafer Theory

DS-Ontology Modeling

Evidential Reasoning on DS-Ontology

Conclusion and Future Work

Introduction and Context

- Uncertainty
 - Important characteristic of data and information handled by real-world applications
 - Refers to a variety of forms of imperfect knowledge
 - such as incompleteness, vagueness, randomness, inconsistency and ambiguity

- We consider
 - epistemic uncertainty
 - due to lack of knowledge (incompleteness)
 - inconsistency
 - due to conflicting testimonies or reports
- Objective : tackle the issue of representing and reasoning on this type of uncertainty in semantic applications, by using the Dempster–Shafer theory

Introduction and Context

- Context of our applications
 - Goal: form the most informative and consistent view of the situation
 - Situation observed by multiple sources
 - These observations populate our domain ontology
- Represent & Reason about uncertainty
 - Within the **instantiation of the domain ontology** \rightarrow assertionnal knowledge

Uncertainty Theories and the Dempster-Shafer Theory

- Probability Theory, Possibility Theory, etc.
- Dempster-Shafer Theory
 - Enables the representation of uncertainty, imprecision and ignorance
 - Fundamental notions
 - Discernment Frame
 - Set of hypothetical states
 - Assumptions: exhaustive and exclusivity
 - Basic Mass Assignment
 - Part of belief placed strictly on one or several elements of Ω

$$m: 2^{\Omega} \rightarrow [0,1]$$
 $m(\emptyset) = 0$ $\sum_{A \in 2^{\Omega}} m(A) = 1$

 $\Omega = \{H_1, H_2, ... H_N\}$

Basis of Dempster-Shafer Theory

23.10.2011

Page 6

Basis of Dempster-Shafer Theory

- Classical and global Dempster-Shafer Process

N EADS COMPANY

DS-Ontology Modeling

DS-Ontology Modeling

- Instantiation Example (Con't)
 - Uncertain individuals scenario

AN EADS COMPANY

- Dempster-Shafer Process in Semantic application

Set of candidate instances = {http://ns#aircraft, http://ns#car, http://ns#fireTruck, http://ns#land_Vehicle}

NOT Exclusive $\rightarrow \neq \Omega$

- Automatic generation of the discernment frame Ω
 - Reorganisation of the set of candidate instances
 - in order to satisfy the exclusivity assumption
 - Compute « semantic inclusion and intersection »
 - Computed for each couple of candidate instances
 - Semantic Inclusion
 - For property
 - » If P1 has for ancestor P2, then $P1 \subset P2$
 - For individuals
 - » If I1 has the class or an ancestor of the class of I2, and properties of I2 are also properties of I1, then I1 ⊂ I2
 - Semantic Intersection
 - (see next slide)

Semantic Intersection

= semantic similarity measure exceeding a specific threshold

- Similarity Measure relying on the domain ontology
 - = global function combining existing similarity measures defined in literature
 - » Class of individuals
 - » Wu and Palmer measure

$$conSim(C1, C2) = \frac{2*depth(C)}{depth_{C}(C1) + depth_{C}(C2)}$$

- » Relations between individuals
 - » Nb of common properties vs. different properties

$$propSim(I1, I2) = \frac{2*nbPropComm(I1, I2)}{nbProp(I1) + nbProp(I2)}$$

- Granularity of the set of candidate instances
 - » E.g.: 1st set of candidate instances {#car, #minivan, #aircraft}

» #car ∩ #aircraft = ∅

- 2nd set of candidate instances {#car, #aircraft, #book}
 - » #car \cap #aircraft $\neq \varnothing$
- » Threshold automatically calculated
 - » clustering method

011

Page 13

- Translation to Ω
 - If #inst1 \cap #inst2,
 - Then, #inst1 := {H1, Hinters} and #inst2 :={H2, Hinters}


```
If #inst1 \subset #inst2,
Then, #inst1 := {H1} and #inst2 := {H2, H1}
```

• E.g.:

Set of candidate instances

- = {http://ns#aircraft, http://ns#car, http://ns#fireTruck, http://ns#land_Vehicle}
 - Results of translation to $\boldsymbol{\Omega}$
 - » #aircraft = $\{H_1\}$
 - » $#car = \{H_2, H_3\}$
 - » #fireTruck = { H_3 , H_4 }
 - » #land_Vehicle = {H2, H3, H4, H5}

Set of candidate instances = {http://ns#aircraft, http://ns#car, http://ns#fireTruck, http://ns#land_Vehicle}

Conclusion

- Possible solution in order to handle uncertainty within ontologies
 - Relying on current W3C standards
 - **Uncertain instantiation** of a domain ontology enabled by DS-Ontology
 - Reasoning on uncertainty is made possible through an automatic generation of the frame of discernment
- Future Works
 - Protégé plugin
 - Extend the reasoning over the Boolean inclusion and intersection of candidate instances?
 - Rearranging measures of belief and plausibility and of the rules of combination

Thank you for your attention!

Page 17