

Reasoning under Uncertainty with Log-Linear Description Logics

Mathias Niepert October 2011

Probabilistic Description Logics

- The system should be usable by individuals knowledgeable only in Semantic Web languages and tools (Protégé, ...)
- 2. It must be possible to express uncertainty with degrees of confidence (real-valued weights) and not necessarily with precise probabilities
- 3. The user should not have to worry about *inconsistent* and *incoherent* input to the probabilistic reasoner
- 4. Two types of queries should be supported under uncertainty:
 - The most probable ontology" query and
 - the probability of (conjunctions) of axioms query
- 5. The worst-case complexity should not exceed that of probabilistic graphical models such as Markov and Bayesian networks

Semi-structured data

Full Plato (Πλάτων)

name

Born c. 428–427 BC^[1]

Athens

Died c. 348-347 BC (age approx 80)

Athens

Era Ancient philosophy

Unstructured data

The exact place and time of Plato's birth are not know and influential family. Based on ancient sources, most BC. [a] His father was Ariston. According to a disputed Athens, Codrus, and the king of Messenia, Melanthus Athenian lawmaker and lyric poet Solon. [6] Perictione the brief oligarchic regime, which followed on the colla himself, Ariston and Perictione had three other childre Speusippus (the nephew and successor of Plato as himself older than Plato. [8] Nevertheless, in his Memoral

- 0.8: Philosopher(Plato)
- 0.9: BornIn(Plato, Athens)
- 0.6: Philosopher(Pluto)
- 0.92: DwarfPlanet(Pluto)

Philosopher \sqsubseteq Person

 $DwarfPlanet \sqsubseteq CelestialObject$

0.76: DwarfPlanet □ Planet

0.87: CelestialObject \sqcap Person $\sqsubseteq \bot$

Probabilistic Knowledge Bases

Ontology Alignment
= Schema Matching

0.80: Philosopher(Plato)

0.90: BornIn(Plato, Athens)

0.60: Philosopher(Pluto)

0.92: DwarfPlanet(Pluto)

Philosopher \sqsubseteq Person

 $DwarfPlanet \sqsubseteq CelestialObject$

0.76: DwarfPlanet \sqsubseteq Planet

0.87: CelestialObject \sqcap Person $\sqsubseteq \bot$

Object Reconciliation = Instance Matching

Probabilistic Queries (Ranking, ...)

Learning & Debugging KBs

Log-Linear Description Logics

- Probabilistic reasoning for DLs with sound and complete set of inference rules (\mathcal{EL}^{++} , ...)
- Ontology consists of an uncertain C^U and a deterministic C^D component
- Coherent = no logical contradictions

$$P(\mathcal{C}') = \begin{cases} \frac{1}{Z} \exp\left(\sum_{\{(c, w_c) \in \mathcal{C}^{\mathsf{U}} : \mathcal{C}' \models c\}} w_c\right) & \text{if } \mathcal{C}' \text{ is } coherent \\ \text{and } \mathcal{C}' \models \mathcal{C}^{\mathsf{D}}; \end{cases}$$
 otherwise

Log-Linear Description Logics

Two types of probabilistic queries:

Maximum a-posteriori inference (MAP):
 "Most probable coherent ontology" {C ⊆ D}

• Conditional (marginal) probability inference: "Probability of (conjunction of) axioms"

$$P(C \sqsubseteq D \mid Ev) = 0.47$$

Application: Ontology Induction

"Is very A also a B?"

"Can there be anything that is both an **A** and a **B**?"

Disjointness

0.6: A ⊑ B 0.9: D ⊑ A

•••

 $0.7: A \sqcap B \sqsubseteq \bot$ $0.9: A \sqcap D \sqsubseteq \bot$

...

 $0.8{:}\ \exists r.\top \sqsubseteq A$

...

0.935

0.990

0.961

 $M_{AP}I_{n_{fe}r_{e}n_{Ce}}$

0.45: A \sqsubseteq B 0.91: D \sqsubseteq A

...

0.37: A \sqcap B $\sqsubseteq \bot$ 0.29: A \sqcap D $\sqsubseteq \bot$

...

Axiom type	Algorithm	Precision	Recall	F_1 score
Subsumption	Greedy	0.620	0.541	0.578
	\mathcal{EL}^{++} -LL MAP	0.784	0.514	0.620
Disisintass	Greedy	0.942	0.980	0.961

 $A \sqsubseteq B$ $D \sqsubseteq A$ $A \sqcap B \sqsubseteq \bot$ $\exists r. \top \sqsubseteq A$

ELOG in Practice

```
SubClassOf(
 Annotation(<http://URI/ontology#confidence> "0.5"^^xsd:double)
 <a href="http://zoo/Penguin">
 <http://zoo/Bird>
DisjointClasses(
 <http://zoo/Bird>
 <a href="http://zoo/Mammal">
```

http://code.google.com/p/elog-reasoner/

Probabilistic Description Logics

- The system should be usable by individuals knowledgeable only in Semantic Web languages and tools (Protégé, ...)
- 2. It must be possible to express uncertainty with degrees of confidence (real-valued weights) and not necessarily with precise probabilities
- 3. The user should not have to worry about *inconsistent* and *incoherent* input to the probabilistic reasoner
- 4. Two types of queries should be supported under uncertainty:
 - The most probable ontology" query and
 - the probability of (conjunctions) of axioms query
- 5. The worst-case complexity should not exceed that of probabilistic graphical models such as Markov and Bayesian networks

Thank you!

Questions? Criticism?