
 1

Establishing Presence within the Service-Oriented
Environment

Eric Konieczny, Ryan Ashcraft, David Cunningham, Sandeep Maripuri
Booz Allen Hamilton

8283 Greensboro Drive
McLean, VA 22102

703-902-5000
konieczny_eric@bah.com, ashcraft_ryan@bah.com, cunningham_david@bah.com, maripuri_sandeep@bah.com

Abstract—As Service Oriented Architectures continue to
gain prominence as a mechanism to realize standards-based,
distributed computing paradigms, the ability for traditional
implementations to support bandwidth disadvantaged and
runtime composition scenarios has been questioned.12
Traditional approaches leverage centralized registry
platforms to enable service discovery functionality, but this
inherently introduces the possibility of stale metadata and
registry information that does not reflect actual operating
conditions. Service presence offers a fresh opportunity to
redefine service discovery; while not typically viewed as a
crucial element of SOA's runtime discovery solution space,
service presence significantly enhances the real-time
monitoring of services by introducing an omnipresent
mechanism for capturing a service's state. This paper
focuses on analyzing and evaluating the feasibility of
utilizing Peer-to-Peer (P2P) approaches to better facilitate
service presence and dynamic service discovery through
discussion of experimentation conducted using an
eXtensible Messaging and Presence Protocol (XMPP)
driven prototype.

TABLE OF CONTENTS

1. INTRODUCTION .. 1
2. SERVICE ORIENTED ARCHITECTURE.............................. 2
3. MOTIVATION.. 3
4. SERVICE PRESENCE ... 5
5. IMPLEMENTATION ... 7
6. CONCLUSION .. 10
REFERENCES .. 10
BIOGRAPHIES ... 11

1. INTRODUCTION
Service discovery is a central concept for fully realizing the
benefits of Service-Oriented Architecture (SOA). A robust
service discovery implementation enables the runtime
fulfillment of the “Publish-Find-Bind” SOA paradigm and
facilitates the execution of context-sensitive business policy.
More importantly, by allowing service clients to
dynamically locate and access services at runtime, SOA can
better react to the malleable nature of highly distributed
enterprises. Where there is frequent fluctuation in both
services and service consumers, such as in mobile,
bandwidth disadvantaged environments, paramount
1
1 978-1-4244-2622-5/09/$25.00 ©2009 IEEE.
2 IEEEAC paper #1311, Version 2, Updated January 9, 2009

importance must be placed on an implementation’s ability to
seamlessly handle the change. The lack of an effective
mechanism for dynamic service discovery can result in the
significant degradation of overall system capability and
quality.

As SOA continues to gain traction within the command and
control (C2) community and becomes the underlying
technology vehicle driving real-time production systems
deployed to theater, the effectiveness of traditional SOA
implementations within non-traditional environments must
be evaluated. The capabilities of a SOA component
deployed on a fighter jet, tank, satellite, missile, or other
non-traditional asset should be synonymous to those of a
component deployed to a traditional, stationary server.
Similarly, given the recent industry trend centered on web
service enabling dynamic enterprise resources, such as
sensors [1], and their corresponding integration into SOA
infrastructures, traditional approaches and commonly
accepted patterns may not suffice. More specifically, the
needs and capabilities of a dynamic service discovery
implementation deployed to a volatile SOA environment
should be re-addressed.

Traditional industry de-facto standards providing dynamic
service discovery capabilities have generally employed
standards-based, centralized registry platforms, such as
Universal Description, Discovery and Integration (UDDI)
and Electronic Business using eXtensible Markup Language
(ebXML). These models have several strengths and provide
a powerful and flexible mechanism to store and retrieve
service metadata in an interoperable fashion. As a result,
centralized registry based service discovery
implementations have gained wide acceptance and
popularity within the user community. However, due to the
lack of a dynamic feedback mechanism, the overall
effectiveness of these centralized models is limited by their
storage of stale snapshots of the transient environments in
which they operate.

Previous research and development focusing on better
facilitating dynamic service discovery in distributed
environments has produced several service discovery
protocols [2], including Jini Network Technology and
Universal Plug and Play (UPnP). However, these
technologies are specifically designed as lower-level
communication protocols and as a result, have not been
widely applied at the enterprise scale. This paper will

 2

introduce the notion of establishing service presence as a
solution to help alleviate some of the issues surrounding the
usage of traditional, registry-based service discovery
platforms in dynamic environments, on an enterprise SOA
level. Service presence offers a fresh opportunity to refine
dynamic service discovery by enabling the real-time
monitoring of services through the omnipresent capturing of
a service’s state. This paper will focus on how service
presence can be applied to a wide variety of C2 applications,
both within the military and civilian domains, to better solve
challenging use cases associated with a SOA’s operation in
non-traditional, unpredictable environments. Additionally,
this paper will discuss the establishment of service presence
through a standards-based, eXtensible Messaging and
Presence Protocol (XMPP) driven solution, leveraging a
rich set of presence and event-driven capabilities, to
augment the service metadata publishing and retrieval
infrastructure that is already in wide use across the industry.

2. SERVICE ORIENTED ARCHITECTURE
Service-Oriented Architecture (SOA) is a paradigm for
organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. It
provides a uniform means to offer, discover, interact with,
and use capabilities to produce desired effects consistent
with measurable preconditions and expectations[12]. More
concretely, SOA is similar to traditional component models,
and relates different functional capabilities by providing
uniform, platform-agnostic access to these capabilities via
defined interfaces. These capabilities, or services, provide a
platform-neutral interface contract that allows for service
interaction across distributed and heterogeneous platforms
in a uniform and universal manner. Services can be made
available by publishing the service to a service registry
where it may be discovered by a service consumer.

From an enterprise architecture perspective, the physical
infrastructure to provide the underpinnings of this data
sharing platform, in part, lies in the adoption of a SOA,
implemented using Web Services and other XML-driven
initiatives. Within a SOA, services are visible to the network
at large by providing physical interfaces over enterprise
assets. These services are platform neutral, and are
described with application-agnostic service descriptions that
can be published to metadata registries. Thus, network-
enabled users are provided an open, standards-based means
to discover relevant services and to invoke them either
individually or within the framework of a larger composite
process that leverages several services across the enterprise.
 SOA provides a foundational layer for an information-
centric enterprise that satisfies new and changing business
needs by enabling the dynamic sharing and aggregating of
information across organizational boundaries via individual
service-enabled enterprise assets [13].

However, SOA, by itself, is merely an abstract architecture
specification; World Wide Web Consortium (W3C) [14]

and the Organization for the Advancement of Structured
Information Standards (OASIS) [15] endorsed Web Service
standards (WS-*), built over XML and Web technologies,
represent the latest attempt to realize the full capabilities of
SOA. These standards provide many of the essential
physical infrastructure components required of a SOA
platform:

(1) Message Encoding: SOAP is a standardized
specification for encoding message payloads between
services.

(2) Service Interface Description: Web Service
Description Language (WSDL) describes a Web
service's capabilities as collections of communication
endpoints capable of exchanging messages.

(3) Service Metadata Registry: Universal Description,
Discovery, and Integration (UDDI) is a registry for
services to expose their interface descriptions for
discovery on the network.

Figure 1 – Traditional web services basic protocol stack

In particular, service discovery is a key enabling component
of SOA’s “Publish-Find-Bind” architectural pattern. As
described in Figure 2, a SOA’s service discovery capability
enables a service consumer to find the information needed
to access services at runtime by providing the relevant set of
business context metadata describing the desired service’s
classification, functionalities, and other relevant exposed
metadata. Once provided with needed invocation metadata,
the service consumer can dynamically leverage the desired
service programmatically at runtime. As a result, service
consumers can execute business logic and perform policy
decision-making in real-time based on relevant business
events.

 3

Figure 2 – Publish-find-bind SOA paradigm

From an enterprise computing standpoint, service-oriented
architecture implementations have resulted in a fundamental
shift from application-centric computing, where only a
privileged set of users access data from isolated applications
that perform a limited set of tasks, to a more situation-
centric model, where a consumer interacts with a loosely-
coupled system that provides dynamic, context-sensitive
capabilities based on the operational needs of the problem at
hand. Essential to this vision of improved interoperability
and coordination is enabling services and their consumers –
doers and users - to better coordinate the sharing of
information. This fundamental support of loose coupling
significantly increases the value of a SOA infrastructure by
eliminating integration barriers of new business components
and functionalities. Without an effective service discovery
mechanism, a SOA implementation’s components become
increasingly interdependent and unable to react to one
another as the system grows in size and function. Service
consumers may be limited to the design time, hard-coded
usage of available services. As a result, a SOA’s ability to
handle infrastructure change is significantly hindered as
labor-intensive code-base modifications may be required for
even trivial modifications such as service endpoint changes.
A robust dynamic service discovery solution can enhance a
SOA’s capacity to react to changing conditions by
reconfiguring itself dynamically through the seamless
integration of new, previously unknown services.

3. MOTIVATION
With the recent advances and the rapid adoption of
pervasive and grid computing, SOA has emerged as a key
architectural paradigm for effectively facilitating
communication between increasingly heterogeneous assets.
In dynamic, distributed environments, a SOA’s ability to
seamlessly handle change is paramount. Accordingly, the
effectiveness of a SOA’s dynamic service discovery
solution in providing service consumers with accurate, up-
to-date discovery functionality becomes even more
prevalent than in a more stable infrastructure. The negative
impact of network fluctuations, service outages, re-
classifications, and transient enterprise situations can all be

reduced through the effectual use of dynamic service
discovery. Due to the high frequency and amount of
variability in service providers, the overall capability of a
SOA may become significantly degraded or even rendered
useless barring the presence of a robust dynamic service
discovery solution. Several industry areas, including federal
domains such as military, defense, and intelligence, as well
as commercial domains focused on mobile computing
platforms, have a strong business need for a service
discovery implementation that is able to adapt within
transient environments. In particular, due to the highly
mobile and variable nature of the environments in which
they typically operate, C2 applications can especially
benefit from this type of enhanced service discovery
mechanism that is capable of effectively functioning in
volatile enterprise situations.

Typical Industry Approaches to Service Discovery

Traditional industry approaches to dynamic service
discovery have generally leveraged centralized registry
platforms. These models often utilize well known standards
such as UDDI and ebXML. Centralized registry
implementations typically provide a powerful and flexible
system for storing and retrieving service metadata, and as a
result, have achieved significant buy-in from and adoption
within the enterprise community. In most cases, the process
by which a service provider is registered to a service
registry is a static process: a developer or system
administrator manually publishes the relevant metadata
describing the service to the registry. Similarly, if a
previously published service is updated or removed, the
corresponding metadata changes must be manually applied
to the service registry.

While static, human-driven service registration processes
may be acceptable within more stable environments, this
approach is generally not viable in dynamic, distributed
enterprises. The presence of highly variable service
providers can create an abundance of stale metadata
orphaned within a centralized registry. As services fluctuate
due to loss of communications, re-classifications, and other
dynamic enterprise interruptions, the metadata being
exposed by the service registry to service consumers for
dynamic service discovery purposes remains the same,
unless physically updated by the appropriate party. Based
on the frequency of service provider changes and service
consumers accessing the service registry, manually
synchronizing the registry with updated service metadata
may not be feasible.

 4

Figure 3 – System degradation as a result of invalid service metadata

As service consumers attempt to dynamically discover
desired services, they are provided with outdated, invalid
service information from the service registry. This has
several negative consequences, as consumers may attempt
to programmatically invoke services that are not available,
or potentially initiate more serious processing errors by
kicking off a sequence of incorrectly executed business
logic based on service misinformation. As invalid service
metadata is propagated and leveraged throughout the
environment, the overall effectiveness of the system is
drastically reduced. In highly dynamic SOA enterprises, the
negative effects associated with the presence of invalid
service metadata are significantly amplified in comparison
to a more stable environment.

Challenges to Service Discovery in C2 Applications

In comparison to many other industries, SOA infrastructures
deployed within the C2 domain are typically subject to
greater amounts of variability and instability than traditional
SOA deployments. This is largely due to the highly mobile
and potentially harsh nature of the environments in which
these services frequently operate. As a result, the impacts of
stale service metadata discussed above, stemming from the
use of traditional registry implementations for service
discovery, can be comparatively pronounced in SOA-driven
C2 applications. Within both the military and civilian
sectors of C2, several difficult technical challenges exist as

a result of the lack of a service discovery implementation
that is capable of effectively performing in dynamic C2
environments. For example, consider the scenario presented
in Figure 3, in which a mobile tank unit is provided with
network connectivity via a military satellite system.
Assuming a service oriented view of a network access
capability, each individual tank might act as a service
consumer and dynamically discover and invoke available
network-providing satellite services, which are published to
a service broker. Due to adverse weather conditions,
satellite position, and other variable factors, a satellite may
not be available for use or may provide unacceptably slow
network access speeds. Using the traditional, static service
registration approach discussed above, a temporarily
disabled or disadvantaged satellite might be incorrectly
described as fully operational within the relevant service
registry. Nearby units may inappropriately attempt to
consume these non-functional satellite services and as a
result, degrade their tactical capabilities.

Another related challenge area involves communications
coverage loss in aerial units. For example, consider a
unmanned aerial vehicles (UAV) that has been tasked on a
low-priority reconnaissance mission. As the UAV travels
across the specified target area, it may periodically enter in
and out of dead-zones during which it loses network
connectivity and contact with its tasking entity. Assuming
that the UAV can be considered as a service provider within

 5

a SOA, the dynamic state of the UAV, in terms of its
availability to be communicated with and re-tasked, will not
likely be reflected in the relevant service registry if a
traditional service discovery and publishing paradigm is
employed. The corresponding presence of invalid metadata
describing the operating state of the UAV may hinder or
even prevent the dynamic re-tasking of the unit to perform
time-sensitive, higher priority work.

Another scenario illustrating the need to re-address service
discovery patterns occurred during Joint Task Force
Operation Burnt Frost, in which a non-functioning U.S.
National Reconnaissance Office satellite was intercepted
and shot down [16]. One of the major challenges of Burnt
Frost involved the assessment of the operation’s effect on
other nearby satellites, specifically in terms of whether or
not the remnants of the destroyed satellite collided into other
satellites, which could potentially cause significant damage
and affect satellite operational capabilities. Assuming that
nearby relevant satellites were deployed within a SOA
environment, each satellite might be manually published as
a service provider to a traditional registry platform. While
Burnt Frost was an important success, the level of effort
required by the operation’s team may have been lowered if
the pre-existing IT infrastructure, specifically the service
registry, could have been leveraged to immediately
determine which satellites had been affected by the
operation and were still fully functional and available.

Previous Research on Discovery in Volatile Environments

Previously conducted research efforts attempting to address
issues surrounding the enablement of an effectual dynamic
service discovery implementation in a distributed SOA
generally utilize P2P-driven, announcement-based
mechanisms over lower level communication protocols,
such as Jini and JXTA [3] – [5]. While these discovery
models have several merits, they lack significant buy-in
from the enterprise community. One reason for this lack of
support may be because the underlying technologies used
are typically tied to a specific technology or language, such
as Java, as opposed to being based on open standards.
Additionally, other ad-hoc techniques may be applied to
resolve stale service metadata storage issues, such as
enabling a service registry platform to periodically prune its
invalid entries. While this begins to address the problem, a
more robust architectural pattern is needed. Given the
prevalence of centralized registry platforms in SOA
implementations in existing deployments, a mechanism is
needed that will easily complement pre-existing discovery
infrastructures.

4. SERVICE PRESENCE
In order to alleviate the aforementioned issues associated
with utilizing traditional mechanisms for dynamic service
discovery, the notion of service presence can be applied.
Service presence refers to the real-time monitoring of a
service by introducing an ubiquitous mechanism for

capturing service state. Depending on the exact nature of
the relevant system’s requirements, service presence can
track different aspects and levels of service state. For
example, in a pervasive environment composed of mobile,
transient services that frequently fluctuate between an up
and down state, service presence might be employed
exclusively from the standpoint of maintaining an
omnipresent reference of whether or not services are
available for use. On the other hand, other systems may
find it useful to apply service presence to track other facets
of service state, such as advertised metadata intended to be
used by service consumers for discovery purposes, or even
the nature of the data content provided by a service. The
architectural pattern of service presence can be leveraged in
a number of different ways to provide consistently valid, up-
to-date service information for utilization by a dynamic
service discovery solution.

While not typically viewed as a crucial element of a SOA’s
runtime discovery solution space, the application of
presence offers a fundamentally different, proactive
approach to dynamic service discovery. The establishment
of service presence as a means to capture and leverage
service state in real-time for use within a dynamic service
discovery implementation has significant benefits to a SOA.
By seamlessly improving the quality of a system’s
underlying service discovery infrastructure, a SOA’s
adaptability and capacity for self-reconfiguration based on
business events and policy is similarly enhanced. Presence
can be used as a key component in enabling effective
dynamic service discovery within volatile enterprises.
While the benefits of utilizing service presence in a more
stable enterprise, in which there is little change in service
composition and availability, appear to be comparatively
low, it can be used to reduce or eliminate the need for
human-in-the-loop interactions on service registries. By
effectively employing service presence, a SOA
infrastructure can provide qualitatively better dynamic
service discovery capabilities. Specifically, a dynamic
service discovery implementation can increase its capacity
to provide more accurate, dependable service discovery
results by utilizing near perfect service information as
provided by a service presence mechanism; the service
metadata used by the discovery implementation is, to an
extent, guaranteed to be representative of the real-time state
of the service at the time of the discovery request.

 6

Figure 4 – Application of service presence within C2 problem domain

From a service consumer’s standpoint, the quality of
dynamic service discovery responses is transparently
improved without any extra effort in terms of initiating
more expressive discovery requests. Additionally, the
added reliability of the received discovery results precludes
any further work that must be done at runtime to ensure the
validity of those results, such as determining whether or not
a returned service is actually available and deployed to the
given endpoint.

Benefits of Service Presence within C2 Applications

Service presence can be employed to help enhance the
quality and capabilities of dynamic service discovery
implementations, especially within the context of C2
specific applications. Revisiting the use cases described in
Section 3, service presence can, from a service consumer
perspective, help increase the situational awareness of
service availability and state. The establishment of presence
enables consistently accurate information regarding
dynamic elements, such as satellite availability for network
access or UAV communication connectivity for dynamic re-
tasking, to be proactively published to a service discovery
provider and seamlessly leveraged by consumers. As
illustrated in Figure 4, by maintaining a near perfect
knowledge of satellite, tank, and aerial unit state in terms of
accessibility, geo-location, and other dynamic metadata
aspects, several difficult challenges hindering a C2 SOA’s
effectiveness can be addressed.

Another relevant domain where the pattern of service
presence can be utilized involves communications coverage
loss in sensor networks. Wireless, ad hoc sensor networks
play a key role in enabling intelligent, ubiquitous computing
models, but are typically very unpredictable in terms of their
connectivity to the outside world and quality of service [11].
Additionally, wireless sensor networks are leveraged across
the C2 domain for a wide variety of uses, including aircraft
engine health monitoring [17]. Especially given the recent
industry trend to service enable sensor units for usage
within SOA infrastructures, service presence can be
established to manage the fluctuating on and off state of
sensor resources within the context of dynamic service
discovery.

Previous Research on Service Presence

The application of service presence within enterprise SOA
environments is a comparatively undocumented and
unexplored topic. Some research has been performed
investigating the potential of utilizing lower level service
discovery protocols, such as Jini and JXTA, to allow
services to proactively announce their presence to a group of
service peers [6]. However, these approaches are more
focused on providing a high-performance mechanism to
enable the self-registration of a service and the initial
advertisement of its capabilities, as opposed to facilitating
the continual real-time monitoring of service state.
Additionally, the success of these models may be limited

 7

within the enterprise domain by their inherent dependence
on Java and the presence of a Java Virtual Machine (JVM).
Other relevant research has presented the idea of extending
Session Initiation Protocol for Instant Messaging and
Presence Leveraging Extensions (SIMPLE) messages with
Web Service Description Language (WSDL) service profile
snippets to enable the exchange of WSDL defined service
metadata within a presence framework [7]. This idea has
several distinct benefits, in that to an extent, it provides a
mechanism for tracking service state in real-time. However,
the proposed system may be limited by its focus on
providing an integrated presence framework, as opposed to
a service discovery solution; only the method by which
services transmit presence information is described,
services must have some prior knowledge of each other’s
address and access protocol before being able to participate.

5. IMPLEMENTATION
Experimentation was conducted to develop a prototype
capable of establishing an effective service presence
mechanism that could be leveraged to provide improved
dynamic service discovery capabilities within dynamic SOA
environments. A key aspect of the developed prototype was
to ensure that the implemented service presence solution
could be easily integrated into a pre-existing SOA
infrastructure to augment the service discovery capabilities
already provided by a traditional, centralized service
registry. With both of these overarching requirements in
mind, XMPP was selected as the underlying technology
vehicle to provide the needed service presence capabilities.

XMPP as a Means to Establish Service Presence

XMPP is an open standards, XML-inspired protocol
designed for near real-time, extensible instant messaging
and presence information [8]. The technology is best
characterized by its simple, flexible, and lightweight
architecture. Most XMPP server implementations leverage
long-lived XML stream parsing models, which can enable
XMPP-driven applications to achieve strong performance
and high message traffic throughput. Additionally, a
powerful set of event publishing and notification
functionalities are provided through a publisher-subscriber
XMPP protocol extension [9]. Given its previously
described abilities, XMPP was chosen as a more viable
candidate than lower level service discovery protocols, such
as Jini and JXTA, to act as the core technology used for
establishing service presence. While a lower level protocol
may have provided better performance, XMPP was
determined to be a better fit for use at the enterprise SOA
level due to its standards-based nature and rich set of built-
in presence, publisher-subscriber, and messaging
functionalities.

Notional Architecture

The notional architecture for the developed dynamic service
discovery prototype can be seen in Figure 5. In the

prototype, an XMPP client proxy wrapper is instantiated for
each service and service consumer deployed within the
SOA, which enables the real-time sharing of presence
information and the usage of XMPP’s publisher-subscriber
capabilities. Similarly, the pre-existing UDDI registry is
wrapped by an XMPP server instance, which acts as a proxy
to service registration and metadata update requests.

When a service is initially deployed to the enterprise, the
service self-registers its presence and state information
through its corresponding XMPP client proxy. In turn, the
XMPP client proxy sends the appropriate message to the
XMPP server announcing the presence and advertised state
metadata of the new service. This message, as shown in
Figure 4, encapsulates two different types of relevant
service metadata. The first type is metadata that will remain
fairly static for comparatively long periods of time and
should be published and maintained within the UDDI
registry. This may include taxonomy classification, WSDL
endpoint, and other stateful information that will most likely
not change at a frequency that could be prohibitive to
publishing the new relevant updated metadata value in the
UDDI registry on each change. For extensibility and
expressivity purposes, this static metadata is represented in
the service announcement message as a tModel, which is
provided for the service at design time. The second type of
metadata contained within the service announcement
message is any information that is highly volatile and as a
result, cannot be easily published to the underlying UDDI
registry due to performance and scalability constraints. This
may include geo-spatial information describing the service’s
deployment location, whether or not the service is available
for use at a given point in time, or even certain aspects of
the data content provided by the service. As this dynamic
information should not be published to the UDDI registry, a
mechanism is needed that will proactively notify service
consumers who are interested in actively knowing when the
relevant metadata has changed, or more specifically, if the
metadata has entered a particular threshold. This event
driven capability is provided through XMPP’s publisher-
subscriber infrastructure. The volatile service metadata
specified in the service announcement message is published
to a pubsub node on the XMPP server.

 8

Figure 5 – Notational architecture of developed dynamic service discovery prototype

For consistency and simplicity purposes, the name of the
pubsub node that is published to is the same as the service’s
specified taxonomy classification node name.

<iq type='set' from='service-provider@service-
endpoint.com'to='pubsub.xmpp-service-discovery-
provider.com' id='publish1'>
 <pubsub xmlns='http://jabber.org/protocol/pubsub'>
 <publish node='urn:xmpp-service-
discovery:taxonomy:generic-services'>
 <item>
 <service-provider-metadata
 xmlns='urn:xmpp-service-discovery:service-
provider-metadata'>
 <tModel
 tModelKey="uuid:5DD52389-B1A4-4fe7-B131-
0F8EF73DD175" xmlns:uddi='urn:uddi-org:api_v3'>
 <name>Sample Service Provider</name>
 <description xml:lang="en">Sample service
provider within the XMPP Service Discovery Provider
 </description>
 <categoryBag>
 <keyedReference
tModelKey="uddi:uddi.org:wsdl:porttypereference"
keyName="wsdl:portType Reference"
keyValue="uuid:340e72e4-12d0-44a1-9a08-3ef8733c27dc"
/>
 <keyedReference tModelKey="uuid:cf4c1ad8-

37cb-412c-ac40-0ad8b419a0e3" keyName="Sample
Service Provider Taxonomy" keyValue="urn:xmpp-
service-discovery:taxonomy:generic-services" />
 ...
 </categoryBag>
 </tModel>
 <subscribable-metadata>
 <available-for-use>true</available-for-use>
 <current-location>
 <kml xmlns="http://www.opengis.net/kml/2.2">
 <Placemark>
 <name>New York City</name>
 <description>New York City</description
 <Point>
 <coordinates>
 -74.006393,40.714172,0
 </coordinates>
 </Point>
 </Placemark>
 </kml>
 </current-location>
 ...
 </subscribable-metadata>
 </service-provider-metadata>
 </item>
 </publish>
 </pubsub>

 9

 </iq>

Figure 6 - Sample service presence and metadata
announcement sent by a XMPP client wrapper on behalf

of a service

In addition, using XMPP’s core built-in capabilities, a
connection used for message traffic flow and presence
information exchange is established and maintained
between the XMPP client proxy and the XMPP server. By
deploying the XMPP client proxy and the relevant service in
conjunction on the same network entity, unexpected
network fluctuations and outages preventing consumer
interaction with the service can be automatically detected by
the XMPP server through the disruption in its connection
with the corresponding XMPP client proxy. The XMPP
server can then leverage the appropriate service metadata
storage facilities, as described below, to appropriately
update the relevant service information to reflect the
network connectivity loss and unavailable state of the
service.

Once the XMPP server receives and validates the service
announcement message, it generates and sends the
appropriate SOAP web service invocation to the UDDI
registry to publish the service’s static metadata.
Concurrently, the XMPP server publishes the service’s
transient metadata to the appropriate pubsub node on the
server, which proactively alerts any service consumers who
are subscribed to the presence of services with metadata
matching that of the newly published service. Similarly,
when the state of a previously published service is modified,
the XMPP client proxy wrapper generates and forwards the
appropriate service announcement message to the XMPP
server. While the presence of the published service in terms
of network connectivity can be seamlessly monitored by the
XMPP client proxy and XMPP server using XMPP’s built-
in presence infrastructure, the service has the responsibility
of providing the XMPP client proxy with any other updated
service metadata. Generally, this can be accomplished
through the effectual use of the Observer pattern within the
service.

As previously mentioned, the developed dynamic service
discovery prototype enables service consumers to receive
real-time notifications regarding services of interest through
an event-based subscription mechanism. Through their
corresponding XMPP client proxy, a service consumer can
subscribe to published services that meet a desired
taxonomic classification and volatile metadata criteria. As
new, previously unknown services that meet the desired
subscription criteria are published to the service discovery
capability, or as previously subscribed to services are
modified, updates regarding the state of published services
are pushed to the service consumer in real-time. A Listener
pattern interface is provided such that the consumer can
automatically invoke custom business logic in response to
certain subscribed service events. While this event driven
capability is provided to enable service consumers to
monitor a service’s dynamic state metadata, similar

functionality can be realized with a service’s static state
metadata published to the UDDI registry by leveraging
UDDI’s built-in subscription capabilities [10].
Additionally, service consumers may still dynamically
discover services from the UDDI registry by invoking
typical request-response style discovery commands that now
have the added benefit of utilizing more accurate and
dependable service information.

Analysis of the Developed Prototype

The implemented prototype offers several advantages to
traditional, standalone service registry implementations in
dynamic SOA environments through the establishment of
service presence. By enabling different mechanisms for
persisting and broadcasting service state based on frequency
of modification, the proposed system attempts to bring
together the strengths of both XMPP’s presence and
messaging capabilities and UDDI’s metadata storage and
retrieval infrastructure. Additionally, service consumers are
transparently presented with more dependable dynamic
service discovery results through the underlying
establishment of service presence, and are also given the
option of leveraging a more proactive, event-driven
discovery mechanism.

While the implemented prototype was designed to
demonstrate the viability of establishing service presence at
the enterprise level, there are alternate strategies that may
improve the system’s dynamic service discovery
capabilities. For example, there may be a more robust and
extensible fashion to determine which advertised service
metadata is persisted through the UDDI registry or through
the XMPP-provided publisher-subscriber infrastructure.
Instead of using an ad-hoc, predefined approach, the service
metadata’s modification frequency could be monitored in
real-time and depending on the requirements of the system,
a policy could be developed that could dynamically promote
or demote metadata elements from storage within either
infrastructure. An additional aspect of the developed
prototype where there is opportunity for growth lies in the
schema used to define and create subscriptions to a service’s
volatile metadata set. Currently, an ad hoc system is used to
create a basic metadata filter that is applied to select the
appropriate sets of services to which to subscribe. A more
extensible and flexible framework for defining the criteria
on which subscription filtering is performed, potentially
similar to the Hibernate Criteria API, would significantly
increase the usability of the developed prototype from a
service consumer’s perspective. Similarly, this subscription
filtering framework could be extended to allow for the
definition of custom types of subscription events.
Currently, subscription events are statically defined and are
only generated for instances where a service matching the
provided subscription criteria is published, unpublished, or
has its advertised metadata modified to equal some specified
value.

 10

Applicability of Prototype within C2 Industry

There is significant potential to apply the architectural
patterns used by the implemented prototype to realize
dynamic service discovery related business use cases within
the C2 domain. For example, consider the scenario of a
ground station tasking a series of satellites in orbit to collect
imagery data needed for analysis and planning. For any
given collection scenario, there are a series of primary
satellites that are most desired for use based on their ability
to optimally capture image data for the given situation,
potentially due to several reasons, including the satellites’
available imaging capabilities, relative location, and line of
sight. Conversely, there are a series of secondary satellites
that can also be utilized to capture the needed data but will
not produce the most optimal results. In certain situations, a
primary satellite that is tasked by the ground station to
provide coverage for a particular area will, during its normal
orbit path, come into close proximity with the sun such that
it is temporarily rendered inactive. During this period of
inactivity, a secondary, backup satellite must be tasked to
temporarily provide the needed coverage until the primary
satellite has traveled back into a position appropriate for
utilization. In order to realize this use case, the notification-
based, event-driven architecture developed for the prototype
can be applied to enable the real-time handling of important
changes in service state. Specifically, the appropriate
ground station service consumer could create a subscription
requesting to be notified when the set of metadata
describing a satellite service’s geo-location reaches a certain
threshold indicating that the satellite is located within a
certain distance from the sun. The ground station consumer
could then process notification events that are proactively
pushed to it to determine in a dynamic, real-time fashion
which satellites should be utilized to best maximize overall
image coverage.

6. CONCLUSION
This paper presented an approach for establishing service
presence as a vehicle to enhance the dynamic service
discovery capabilities of a traditional centralized service
registry platform. Through the introduction of a ubiquitous
mechanism for capturing service state, an enterprise SOA
deployed to a transient environment can qualitatively
improve its dynamic service discovery implementation and
alleviate critical issues related to stale service information
stemming from the traditional usage of a centralized service
registry. Additionally, this paper presented an architecture
for a dynamic service discovery prototype integrating
service presence and event-driven capabilities provided by
XMPP, with the service metadata storage and retrieval
infrastructure provided by a UDDI registry. While the
proposed application of service presence has significant
potential for enhancing service discovery within dynamic
environments, such as those typically encountered in C2,
more exploration and research is still needed, specifically in
the realm of scalability, performance, security, and
governance.

REFERENCES
[1] M. Botts, G. Percivall, C. Reed, and J. Davidson,

“OGCSensor Web Enablement: Overview And High
Level Architecture,” http://www.opengeospatial.org.

[2] F. Zhu, M. W. Mutka, and L. M. Ni, "Service Discovery
in Pervasive Computing Environments," IEEE Pervasive
Computing, vol. 4, no. 4, pp. 81-90, Oct-Dec. 2005.

[3] Ken Arnold, "The Jini Architecture: Dynamic Services in
a Flexible Network," Design Automation Conference, vol.
0, no. 0, pp. 157-162, 36th Annual Conference on Design
Automation (DAC'99), 1999.

[4] F. Xhafa, L. Barolli, R. Fernández, T. Daradoumis, and S.
Caballé, “Extension and evaluation of JXTA protocols for
supporting reliable P2P distributed computing,”
International Journal of Web Information Systems, vol. 4,
no. 1, pp. 121-135, 2008.

[5] M. Pirker and M. Berger, “An approach for fipa agent
service discovery in mobile ad hoc environments,” in
Workshop on Agents for Ubiquitous Computing, in
conjunction with AAMS 2004, July 2004.

[6] N. Furmento, J. Hau, W. Lee, S. Newhouse and J.
Darlington, “Implementations of a Service-Oriented
Architecture on top of Jini, JXTA and OGSI,” in Grid
Computing: Second European AcrossGrids Conference,
AxGrids 2004, Nicosia, Cyprus , Jan. 2004, pp. 90-99.

[7] R. Liscano, A. Ghavam, and M. Barbeau, “Integrating
Service Discovery Protocols with Presence-based
Communications for Ad hoc Collaborative Scenarios,” in
Communication Networks and Services Research
Conference (CNSR 2004), Fredericton, Canada, May 19-
21, 2004. pp. 357-61.

[8] P. Saint-Andre, “Extensible Messaging and Presence
Protocol (XMPP): Core,” IETF RFC 3920, 2004.

[9] R. Meijer, P. Millard, and P. Saint-Andre, XEP-0060:
Publish-Subscribe Version 1.12 Specification, XMPP
extension specification, Oct. 2008,
http://xmpp.org/extensions/xep-0060.html.

[10] T. Bellwood, et al., UDDI Version 3.0.2 Specification,
OASIS standard, Oct. 2006,
http://www.uddi.org/pubs/uddi_v3.htm.

[11] S. Meguerdichian , F. Koushanfar, M. Potkonjak and M.
 Srivastava, “Coverage Problems in Wireless Ad-hoc
Sensor Networks,” in INFOCOM 2001, Twentieth Annual
Joint Conference of the IEEE Computer and
Communications Societies, Anchorage, Alaska, 2001, vol.
3, pp. 1380-1387.

 11

[12] OASIS Reference Model for Service Oriented
Architecture 1.0, http://docs.oasis-open.org/soa-
rm/v1.0/soa-rm.pdf.

[13] Margaret Arney, Brad Cohen, Brad Medairy, “Impact of
Advanced Collaborative Architectures on Intelligence
Analysis,” 2004 IEEE Aerospace Conference
Proceedings, March 2004.

[14] World Wide Web Consortium, http://www.w3.org/.

[15] Organization for the Advancement of Structured
Information Standards, http://www.oasis-open.org/.

[16] J. Raymond, “Operations Group blazes new trail during
Operation Burnt Frost,” Peterson Air Force Base,
Colorado Springs, Colorado, March 11, 2008.

[17] H. Bai, M. Atiquzzaman, and D. Lilja, “Wireless Sensor
Network for Aircraft Health Monitoring,” Broadband
Networks (BROADNETS'04), 2004, pp. 748 – 750.

BIOGRAPHIES
Eric Konieczny is a Consultant with Booz Allen Hamilton,
Inc., providing software development and technology
consulting services to the federal government. His skill set
and focus areas include Java/JEE software development,
Service Oriented Architecture (SOA), and Semantic Web
technologies. He is currently participating in several
research and piloting activities, specifically involving
innovative approaches to dynamic service discovery and
dynamic service orchestration. He holds a BS in Computer
Engineering from Virginia Polytechnic Institute.

Ryan Ashcraft is an Associate with Booz Allen Hamilton.
He has nine years of professional experience in delivering
technology consulting services to the government. He has
spent much of his career specializing in Model Driven
Architecture (MDA) systems while also evangelizing
iterative software development lifecycle practices. Mr.
Ashcraft is currently focusing on SOA, providing
architectural direction and mentoring on several research
efforts for Defense and Intelligence Community clients. He
has a BS in Computer Science and Economics from
Vanderbilt University.

David Cunningham is an Associate with Booz Allen
Hamilton Inc. He has over 8 years of proven successes in
the development of enterprise systems and architecture
across the Department of Defense (DoD) and Intelligence
Community (IC). Mr. Cunningham has hands-on
experience leading all stages of application development
efforts including requirements definition, architecture and
design, development, testing, and production support for
enterprise systems. He has a deep understanding of SOA

methodologies and standards and leads initiatives across
the DoD and IC to ensure interoperability across the two
communities.

Sandeep Maripuri is a Senior Associate with Booz Allen
Hamilton, Inc. He has over 10 years of professional
experience in delivering technology consulting services to
the government and industry, as well as significant
experience in the COTS marketplace. His skill set and focus
areas include applying advanced technologies, such as
semantics-based technologies and grid computing to Net-
Centric architectures. He is currently managing research
efforts aimed at prototyping transformational, next-
generation SOA solutions for Defense and Intelligence
Community clients. He holds a BS in Mechanical
Engineering, minor Computer Science, from the University
of Illinois at Urbana – Champaign.

