
Considerations for Versioning SOA Resources

Kenneth Laskey#
The MITRE Corporation

klaskey@mitre.org

Abstract.

Service oriented architecture is a paradigm for

bringing together needs and capabilities, where SOA
services provide an effective means of connecting
consumers and the means to realize desired real world
effects. The resources accessed as part of SOA
interactions are independently owned and evolved but
must be unambiguously identifiable. In cases where the
resources are changing, the consumer must be able to
evaluate how those changes affect appropriateness for
use, whether those are changes to the underlying
capabilities, the service access, or the service
description. This paper presents early discussions on
versioning in the context of a SOA reference
architecture.

1. Introduction

The OASIS SOA Reference Model Technical
Committee (TC) has produced the Reference Model for
Service Oriented Architecture (SOA-RM) as an
abstract framework for understanding significant
entities and relationships among those entities within a
service-oriented environment [1]. The TC has
continued its work by developing a SOA Reference
Architecture (SOA-RA) to provide an abstract
realization of SOA, focusing on the elements and their
relationships needed to enable SOA-based systems to
be used, realized and owned; while avoiding reliance
on specific concrete technologies [2].

As part of its work, the TC is considering the
principles and architectural implications of versioning
of SOA resources, in particular the versioning of SOA
services. While the necessity of versioning

.

#
 The author's affiliation with The MITRE Corporation is provided

for identification purposes only, and is not intended to convey or
imply MITRE's concurrence with, or support for, the positions,
opinions or viewpoints expressed by the author.
Based on "Considerations for SOA Versioning", by Kenneth Laskey
which appeared in Proceedings of the Enterprise Distributed Object
Computing Conference Workshops, 2008. EDOCW '08. © 2008
IEEE.

mechanisms may be obvious to anyone who has dealt
with SOA services, the topic rarely penetrates the
mainstream of SOA publications and implementations
[3]. The work presented here captures important
considerations and begins to lay the framework for the
modeling to be incorporated into SOA-RA. Still in its
early stages, the ideas provide the basis for discussion
and further contributions by the wider community.

2. General discussion of versioning

Versioning assumes simultaneous existence of
multiple (different) implementations of a given
resource, with every implementation distinguishable
and individually addressable [3]. For the current
discussion, we define versioning as the process of
systematically cataloguing the changes to a resource.
This implies an identifiable resource, a specific set of
revisions to that resource, and a modified resource that
is the result of applying the revisions to the original.

A version identifier is a unique label that indicates a
specific configuration of a resource. For software
systems, it is often composed of an immutable name
(e.g. example.txt) and a varying string of nonnegative
integers separated by decimal points (e.g. 3.2.1).
While this is a commonly observed scheme, it is by no
means universally used or used consistently. For
example, Microsoft's major release versioning of its
operating system is Windows 95, Windows 2000,
Windows XP, Windows Vista. For Apple, the current
major versioning is 10.1, 10.2, 10.3, 10.4, 10.5 but this
is not consistent with what version numbers meant
prior to OS X. Other variations are described in [4].

From these examples, we can conclude that not only
should a version be specified through use of a version
identifier, but an explanation should be available on
how the identifier is to be interpreted. For the current
discussion, we consider the format of this explanation
to be out of scope, but it should be readily accessible
and understandable by those needing to interpret the
versioning and consistently applied to enable
appropriate use of the versioned resource.

Note, the current discussion does not preclude a
service lineage where there may be branching of one
version giving rise to more than one subsequent
version, or two or more versions being merged into
one. However, if the descendants are considered to be
versions of the original instead of a new entity, then
the explanation of the versioning scheme must clearly
explain how the version identifier is to be interpreted.
For simplicity, this paper will not specifically deal with
such cases because these do not significantly impact
the issues being raised or the associated conclusions.

3. Versioning and compatibility

Beyond a version identifier indicating a consistent
sequence of versions and defining the revisions that
transform one version into the next, it is necessary to
define a use strategy to specify how a command set or
information set designed for a predecessor is to be used
by the current version and, conversely, how a
command set or information set for the current version
is to be processed by previous versions.

We also refer to a consumer of the resource, where
the consumer is prepared to engage a certain version of
the resource and where the concepts of compatibility
and sufficiency depend on how well a consumer
accustomed to one version can deal with a predecessor
or future version of the resource.

For brevity, we will not discuss notions of
compatibility here – an elementary discussion can be
found in Wikipedia [5][6] and a more technical
consideration is documented by the W3C Technical
Architecture Group [7][8]. However, it should be noted
that compatibility is determined with respect to a
revision and the resource or consumer reflecting that
revision. Compatibility depends on context. In
particular, a general statement that something is
backward or forward compatible is meaningless unless
it is stated against what is compatibility being assessed.
In addition, something can be designed with forward
compatibility in mind, but it cannot be deemed forward
compatible until it can be exercised against a specific
future revision.

4. Versioning and sufficiency

We consider compatibility between versions
because it is highly desirable to maintain reliable
communications and to realize some aspects of the
desired results when changes occur for a resource. As
such, an older resource can receive a message
constructed for a newer version, can process the
message in terms of its understanding, and will
perform functions consistent with its older context.

Similarly, an older consumer may receive a response
that contains unexpected information and may just
make use of the content it finds consistent with its
older context.

The question not addressed by compatibility is
whether the results of interactions across versions is
sufficient for the intent of the consumer. A new
resource may have new functionality that can be
invoked through new terms in the schema used by the
message payload. The new terms could be added
through an extensibility mechanism built into the
original schema, and thus the original schema may be
able to validate the new payload without understanding
that new functionality is desired. The target resource
can generate and return reasonable results but not
necessarily the results required by the consumer. Other
aspects of versioning policy and the need to consider
consumer business needs when assessing compatibility
are discussed in [9].

Thus, we see where it is not only necessary to have
a versioning strategy that defines the semantics of the
version identifier used by any resource, but it may also
be necessary to have versioning policies on the part of
the consumer that define what compatibility approach
is appropriate when interacting across versions. Note
that while policies for SOA are typically addressed in
terms of the service policies, the consumer may also
have policies, and the two policy sets must be
reconciled if interaction is to proceed.

A versioning scheme for a service may include a
generic policy, such as any succeeding version
identified as 1.j will be backward compatible with any
1.i previous version in the sense that results are
identically generated in version 1.j for functionality
that existed in previous 1.i versions. (Note here we
assume i<j implies a previous version.) In this case, an
adequate policy for the resource may be that any 1.j
compatible request can be processed by any 1.i version
of the resource; an adequate policy for the consumer
could be that a response from any 1.i version of the
resource is acceptable.

If version 1.j functionality is required, then while
there exists a degree of compatibility in understanding
and processing version 1.j requests, only version 1.j or
later is sufficient for the consumer's needs, and use of
1.i versions is unacceptable.

The issue can be sidestepped if every version of the
resource is reachable through a different endpoint and
the consumer explicitly chooses the endpoint and thus
the version to be used, but a resource provider may
simply want to reuse the endpoint for new versions.
For example, there is no externally available version
for Google but its ranking algorithms are often altered
to increase search fidelity or to simply respond to
efforts by content providers to game Google’s ranking

algorithm. Google has had a single, stable endpoint at
www.google.com, and consumers use whatever
version is currently accessible from that endpoint.

In general, a search engine user expects results will
be different for a search done last week and the
identical search repeated this week. Items that became
known to the search engine in the past week would
now be presented in a consistent manner. However,
the user has also learned to expect (or simply ignores)
that the search engine itself may have been changed
and the results could vary even if there were no
additional items added to the engine’s index. The
unstated context becomes the default versioning policy.

5. Versioning for SOA services

Versioning indicates change and the question then
is what changes are necessary to be reflected in a SOA
ecosystem.

The OASIS SOA Reference Model (SOA-RM)
identifies the dynamic aspects of SOA services as
visibility, interaction, and real world effects. We will
use this as the framework in which to investigate
versioning for SOA.

Additionally, in a manner consistent with SOA-RM,
we assume service access to any underlying capability;
while this is not necessary, it does simplify the
discussion. However, the discussion is generally
applicable to any resource, whether or not it is
accessible through a SOA service.

In the SOA Reference Architecture (SOA-RA), the
model for a resource (Figure 1) states that resources
have descriptions and the descriptions reference one or
more identifiers by which the identity of the resource is
established. SOA-RA goes on to state that both
services AND service descriptions are resources. While
this may seem circular in reasoning, SOA-RA models
the general concept of description and then expands on
the model for service description as an extension of the
general description model. The rationale for this should
become clear below.

Figure 1 SOA-RA Resource Model

A service description provides information on

• what a service does, i.e. its business functions, the
specific real world effects resulting from actions
against a service, and technical assumptions that
constrain the applicability of the results;

• how to communicate with the service, i.e. the
semantics and structure of a message payload sent
to the service and the actions that sending such
messages can invoke;

• conditions for using the service, i.e. applicable
policies;

• metrics indicating service performance; and
• details of reaching the service, i.e. the service

endpoints and protocols to be used at those
endpoints.

Thus as reflected in description, changes could
affect the functions a service provides, the mechanics
for interacting with it, the conditions for interacting
with it, or knowledge of how the service will respond.
Any change could derive from the underlying
capability or the service as access to that capability.
However, the SOA principle of opacity says the
consumer cares only about what results from the
interaction, so the specifics of where the change
occurred in the implementation is generally irrelevant.

From this, we conclude there is a need to version
the service as part of its service description, but it is
not necessary to explicitly capture version information
about component capabilities or component services
from which the service of interest is constructed. These
components likely have their own configuration
management and versioning conventions, but these are
generally not of interest to the service consumer.
Considerations related to this will be discussed below.

6. Versioning of service description

In the previous section, we discussed how a service
could change and how this would be reflected in its
description, but there are possible changes in the
description that may not directly derive from changes
to the service. Consider, a service description could
change to reflect:
• correcting errors that do not significantly change

the description, e.g. a simple typo;
• correcting errors that do significantly change

description, e.g. the word NOT was missing from
the functionality description;

• adding information, e.g. an additional real world
effect that was previously considered
inconsequential;

• removing information that was previously required
or thought useful, e.g. the number of times the
service has been used;

• consolidating elsewhere the specifics of some
information and replacing the occurrences in the
service description by a link to the consolidated
location, e.g. version history.

The degree to which these changes are important
will likely depend on the context of use. Fixing the
typo should be innocuous, but there may be occasions
where it will affect someone's interpretation of
surrounding information. The second and third items
can be seen as potentially substantive changes, and the
last two items may affect the ease with which a
consumer can process descriptive information. Thus,
any change in the service description should be
reflected in a new version for the description, where
the version identifier may be constructed to indicate
the expected significance of the change.

It should be noted that a principle from SOA-RM is
that description is inherently incomplete – one can
never describe every aspect of a resource. It is also
possible that different aspects of description will be
captured by different description sets. For example, the
configuration management for a service will likely
contain implementation details that are not consistent
with the service description to support SOA
interaction. In the current discussion, we only consider
the description needed to enable and support service
interaction. References in the following to one
description do not preclude the existence of
complementary descriptions expressing other aspects
of service description, but a full discussion of such
descriptions is beyond the scope of this paper.

Having established a focus on service interaction,
we consider how information in the service description
affects multiple versions of the description. As an
obvious first requirement, the description should
unambiguously identify its subject resource; if the
resource is versioned, the identity of the resource
should indicate its version and the explanation of the
resource versioning scheme. (Note, the explanation
may be indicated by a link to external documentation.)
As a consequence of this requirement, each version of
the service should have a unique description, i.e. each
new resource version has a corresponding new
description, even if the only thing to change is the
identifier indicating resource version. For example, if
an error was found in the resource implementation and
no new functionality or conditions of use were
introduced when the error was corrected, the previous
description would otherwise still be valid, but a new
description would be needed to identify the corrected
service version.

What then of versions of the service description for
the same service version? As indicated above, a new
version of the service description would be required if
the description changed but the service did not.
However, given the description is of a single version of
a resource, a new version of the description would
supersede any previous one for that resource because
the description update would take precedence. Distinct

versioning of the description does allow review of past
descriptions, for example if a decision to use or not use
a service has changed as a result of the change to
description.

7. Possible representation of service and
description versions

The resource model in Figure 1 shows the
relationship between a resource, its description, and its
identifier. In this section, we will consider a possible
representation for these that can support the agility
desired of SOA and the clarity to unambiguously
identify and describe the resource. Recall that the
description is also considered a resource and while
much of the following discussion will focus on a SOA
service, any general points on identifying a resource
will also apply to the service description.

It should be noted that the following are the starting
elements of ideas on how identity and versioning can
be approached and do not imply consensus on the
approach as presented.

The basis of the current discussion is to use the
Uniform Resource Identifier (URI) [10] to identify
resources. The URI has shown its ability to create a
uniform address space for the Web, and many are of
the opinion that this is one of the prime enablers for the
Web's success.

Let us assume service1 is a resource that may have
numerous versions, and we identify a particular version
by the URI http:///a.b.c/services1/20080601/. We
define the rightmost field as a date of the form
yyyymmdd and the preceding field to be the resource
name. The name service1 is arbitrary for this
discussion and may be replaced by any legal URI path;
the authority following // can likewise be any legal
string for this portion of the URI. For example, if the
service is identified by http://a.b.c/services/preferred/
service1/20080601/, the resource name is still service1
and the version corresponds to the date 20080601.
Application specific guidance can be provided for
generating the resource name or other parts of the URI.

The date acts as the discriminating identifier for this
version of service1. Date is used instead of a version
number because version numbering schemes can
change over time and having the version number as
part of the identifier could lead to eventual confusion
and inconsistencies. The date scheme is more stable
and universal. As the identifier, the date would
represent some definable milestone in the resource life
cycle, and the versioning scheme could define exactly
what life cycle stage was being referenced.

One perceived drawback in using the date as part of
the identifier is that, from a business perspective, one

may not want to associate a date from two years ago
with their service because the service may then be
perceived as old technology, and competitive services
may gain an advantage by implying newer technology.
Further discussion will be needed to determine if this is
a critical issue.

Given the URI as presented as the service identifier,
we propose that the result of dereferencing this URI,
i.e. typing it into a browser, will return the latest
service description. This removes the ambiguity of
where to find the description of the resource and tightly
binds the resource to the description. This can be
especially important when there are multiple versions
of the service.

How can this work across service versions? Let us
refer to the collection of service versions as the service
family. If each service version is identified by a unique
URI as defined above, let us require that every service
family host a standard file – let us say, for example,
version-identifiers.html – that when dereferencing
would return a list of all identifiers that comprise the
service family. If we assume persistence of the
descriptions, these can be accessed and examined even
if the described services are no longer available.

Note, we have emphasized the link between the
identifier and the description but we have not discussed
the service version or the endpoint where the service
would be accessed. Every service description should
identify the version of the service it is describing and
the definition of the versioning scheme being used.
For example, a service description could contain
<version source="http://a.b.c/versiondef/20080215/">

 6.7.2
 </version>
to identify the version number to be 6.7.2 as defined by
the versioning scheme identified by (and possibly
retrievable from) http://a.b.c/versiondef/20080215/.
The service description would also point to the
corresponding service endpoints, either explicitly or
through reference to the service WSDL.

Identifying versions of service description could
follow a similar pattern. For the service identified by
http:///a.b.c/services1/20080601/, dereferencing the
URI would return the latest service description. To
identify the versions of service description
corresponding to this service, let us create a description
identifier by appending the date a particular service
description becomes active to give, for example,
http:///a.b.c/services1/20080601/20090102. Further, let
us assume every service hosts a standard file – let us
say, for example, description-identifiers.html – that
when dereferencing would return a list of all identifiers
that comprise the descriptions associated with the
service. Again, for archival purposes, this would
enable access to older versions of description.

8. The challenges of service opacity

A guiding principle of service oriented architecture
is that the consumer should be able to use a service
without concern or interest in the implementation
details. We typically focus on the WSDL (Web
Services Description Language) representation of the
service interface: the abstract specifics of the
exchanged information and the implementation details
of how and where the exchange occurs. However,
while a stable interface is of obvious importance in
providing "loose coupling" for consumers, it is naive to
expect that implementation changes are of no interest.
For example, if a service accesses a new data source to
respond to a query, the consumer would want to be
aware of this if returned values start showing a
different pattern from past experience. This is
especially true if the new pattern emerged without any
obvious action on the part of the consumer.

The question remains how to balance the value of
opacity of implementation against the real need of
being able to consider the implications of underlying
change. The answer is likely tied to the description of
the service configuration. While the details are
probably separate from the service description
supporting interaction, the service description may
reflect such changes at a macro level, such as the
version of the configuration that would in turn indicate
the separate versions of components comprising the
service. If there was need, the identified configuration
and previous configurations could be accessed to
investigate what changes have occurred and to decide
compatibility in the context of such changes.

9. Conclusions

A thorough understanding of what versioning
means in the context of service oriented architecture is
one of the current topics of discussion for the OASIS
SOA-RA subcommittee developing a SOA reference
architecture. The analysis to this point has indicated the
importance of defining and applying a well-
documented versioning strategy for resources such as a
SOA service. The discussion has also touched on a
related versioning strategy for the corresponding
service description. From the perspective of the service
owner/provider, the description should unambiguously
identify the service, the business functions it provides
and the results it generates, the means to communicate
with the service, the means to access the service, the
conditions of use, and metrics on service operational
characteristics. A change in version should reflect a

change in any of these aspects of description. While
the service description would not provide details of
service implementation that should be opaque to the
consumer, the description should indicate when such
changes occur so the consumer can assess changes in
using a service over time.

The work presented here is preliminary and likely to
evolve with continued discussion. The public review
draft of SOA-RA, available from [2], discusses the
SOA ecosystem in its support of business activities, an
expanded discussion of service visibility and
interaction, and aspects of owning SOA resources,
such as SOA governance and security. An updated
public review draft is due out shortly, and the SOA-RA
subcommittee looks forward to comments and
suggestions.

10. References

[1] "Reference Model for Service Oriented Architecture",
C.W. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R.
Metz eds, OASIS Standard, 12 October 2006,
http://www.oasis-open.org/specs/index.php#soa-rmv1.0.

[2] "Reference Architecture for Service Oriented
Architecture", J. A. Estefan, K. Laskey, F. G. McCabe, D.
Thorton eds., Public Review Draft 1, 23 April 2008,
http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra-pr-
01.html.

[3] B. Lublinsky, "Versioning in SOA", Microsoft Architect
Journal, April 2007, http://msdn.microsoft.com/en-
us/library/bb491124.aspx.

[4] Software versioning, Wikipedia,
http://en.wikipedia.org/wiki/Versioning.

[5] Backward compatibility, Wikipedia,
http://en.wikipedia.org/wiki/Backward_compatibility.

[6] Forward compatibility, Wikipedia,
http://en.wikipedia.org/wiki/Forward_compatibility.

[7] D. Orchard, "Extending and Versioning Languages:
Terminology", Draft TAG Finding, W3C Technical
Architecture Group, 13 November 2007,
http://www.w3.org/2001/tag/doc/versioning.

[8] D. Orchard, "Extending and Versioning Languages:
Strategies", Draft TAG Finding, W3C Technical
Architecture Group, 13 November 2007,
http://www.w3.org/2001/tag/doc/versioning-strategies.

[9] M. Poulin, “Service Versioning for SOA”, SOA World
Magazine, 26 July 2006. Available at http://soa.sys-
con.com/node/250503.

[10] Uniform Resource Identifiers (URI): Generic Syntax,
IEFT RFC 2396, August 1998. Available at
http://www.ietf.org/rfc/rfc2396.txt.

