
Advanced Vulnerability Analysis and Intrusion
Detection through Predictive Attack Graphs

Steven Noel and Sushil Jajodia

Center for Secure Information Systems
George Mason University

4400 University Drive
Fairfax, VA, 22030 USA

Abstract – Network security tools generally lack

sufficient context for maintaining a well informed and
proactive defense posture. Vulnerabilities are usually
assessed in isolation, without considering how they
contribute to overall attack risk. Similarly, intrusion
alarms are logged as isolated events, with limited
correlation capabilities. Security professionals are often
overwhelmed by constant threats, complexity of security
data, and network growth. Our approach to network
defense applies attack graphs for advanced vulnerability
analysis and intrusion detection. A ttack graphs map
paths of vulnerability, showing how attackers can
incrementally penetrate a network. W e can then identify
critical vulnerabilities and provide strategies for
protection of critical network assets. Because of
operational constraints, vulnerability paths may often
remain. The residual attack graph then guides optimal
intrusion detection and attack response. This includes
optimal placement of intrusion detection sensors,
correlating intrusion alarms, accounting for missed
detections, prioritizing alarms, and predicting next
possible attack steps.

I. INTRODUCTION
It is inherently difficult to secure computer networks

against attack. Without adequate tool support, network
security is labor-intensive and error prone, because of
the complexity, volume, and frequent changes in
security data and network configurations. Software
vulnerabilities are commonplace, patches are often
unavailable, and many protocols are insecure.

Moreover, security concerns are interdependent
across the network. Attackers can attack vulnerable
machines and use them as stepping stones to further
penetrate a network and compromise critical systems.
But today’s security tools are generally point solutions,
giving few clues for strategic network defenses. It often
remains a difficult exercise to combine results from
multiple tools and data sources to mount defenses. It
can be challenging for even experienced analysts to
recognize multi-step attack risks, and to understand
which vulnerabilities really are acceptable risks. This
kind of analysis is especially challenging for large
dynamically evolving networks.

By knowing the paths of vulnerability through our
networks, we can reduce the impact of attacks. But

traditional network vulnerability assessment tools
simply scan individual machines on a network and
report possible security problems. They give little
guidance as to how attackers might exploit
combinations of vulnerabilities among multiple hosts to
advance an attack on a network. Without this
knowledge, we cannot optimize our defenses, because
vulnerabilities in isolation lack context.

To address these weaknesses, we capture the
network configuration, (topology, connectivity limiting
devices such as firewalls, vulnerable services, etc). We
then match the network configuration to known
attacker exploits, simulating attack penetration through
the network and predicting attack paths leading to
compromise of mission-critical assets. The resulting
set of all possible attack paths, organized as an attack
graph, constitutes a predictive roadmap of potential
attacks.

Our attack graphs provide context for individual
vulnerabilities, and support strategic vulnerability risk
analysis. Critical combinations of vulnerabilities are
identified for optimal network hardening, minimizing
any potentially disruptive changes to the network.

Still, because of operational constraints (availability
of patches, need to offer critical services, etc.), some
residual network vulnerability usually remains. In such
cases, attack graphs support proactive measures that
reduce the impact of attacks, and guide our responses.
First, we can use the attack graphs to determine optimal
locations for intrusion sensors, to cover known paths of
vulnerability, while minimizing the number of
deployed sensors.

Then, through the predictive power of our attack
graphs, we can tune intrusion detection to focus on
known vulnerability paths. We can also correlate
isolated intrusion alarms into multi-steep coordinated
attacks. Further, we can prioritize alerts based on
incremental penetration and closeness to critical
network assets. We can also predict next possible
attack steps for optimal response.

The next section gives an overview of our approach
for predictive attack graph analysis. Section 3
illustrates the approach through a simple example.
Section 4 describes our working system for predictive

attack graph analysis. Section 5 examines how this
system can be extended for optimal placement of
intrusion detection sensors, and Section 6 shows how
our attack graphs provide context for attack correlation
and response. Section 7 reviews related work, and
Section 8 summarizes our approach.

II. OVERVIEW OF APPROACH
Our approach is to capture the network

configuration, from which we predict attack paths
through the network. We then use the predicted paths
(attack graph) for network hardening, intrusion sensor
placement, alarm prioritization, and attack response.

As shown in Fig. 1, we scan the network to discover
hosts, operating systems, application programs,
vulnerable network services, etc. We also capture
network connectivity, including the connectivity-
limiting effects of devices such as firewalls and router
access control lists.

We apply the network data to an attack prediction
engine, using a database of modeled attacker exploits.
For assumed threat source(s) and/or critical network
asset(s) to protect, we predict multi-step attacks through
the network. This attack graph, computed in worst-case
quadratic time [1][2], represents all known attack paths
through the network.

The resulting attack graph then supports proactive
network defenses. In particular, from the graph we
formulate optimal network hardening strategies. Then,
for any residual vulnerability paths, we place intrusion
sensors in the network to cover all paths, using the
minimum number of sensors [3].

We also fine-tune the intrusion detection system by
focusing on known vulnerability paths. We can then
correlate resulting intrusion alarms with known
vulnerability paths, thus detecting coordinated multi-
step attacks [4]. We can also raise priority for such
coordinated attacks, especially when they lie on paths
to critical network assets.

Exploits Attack
Prediction

Assets Threats

Sensor
Placement

Sensors

Attack
Response

Attack
Correlation

Network

Network
Scans

Network
Hardening

Attack
Graph

Fig. 1. System overview.

The attack graph also provides the context needed
for responding appropriately to attacks. When we
know the possible vulnerability paths, we can restrict
our responses to exactly what prevents further
penetration.

III. ILLUSTRATIVE EXAMPLE
Fig. 2 shows a small network for demonstrating our

generation of network attack graphs. In this network,
the firewall protects the internal network from outside
attack. It is configured to allow only hypertext transfer
protocol (HTTP) traffic to the internal Web Server, and
all other traffic initiated from the outside is blocked.

The Web Server is running a vulnerable version of
Microsoft Internet Information Server (IIS), which is
reachable from the outside through the firewall. The
Mail Server has vulnerable software as well, although
the firewall protects it from being attacked from the
outside directly. The question is whether there are
attack paths that allow the outside Attacker to
compromise the Mail Server.

For this example, we need to capture elements of the
network configuration relevant to attack penetration.
This includes the existence of vulnerable software
(services) on hosts, as well as connectivity allowed to
vulnerable services. We also need a set of potential
attacker exploits that may work against the vulnerable
services.

For example, we could run a vulnerability scanning
tool (e.g., Nessus [5]) against the hosts in the internal
network to map their vulnerabilities, and feed this into
the model. We could then rely on a database of
modeled exploits based on the full set of vulnerabilities
detected by Nessus. To incorporate the connectivity-
limiting effects of the firewall, we could scan through
the firewall (as well as behind it), to implicitly capture
firewall effects, or process the firewall rules directly.

web mailhub

firewall

`

attack

Allow only
Web Server
http traffic

Attacker

Web
Server

Mail
Server

Fig. 2. Small example network.

Fig. 3. Attack graph for example network.

Fig. 3 shows the resulting attack graph for this small
example. There is indeed a multi-step path from the
outside to the Mail Server.

In the first step, the attacker exploits the IIS
vulnerability that is exposed through the firewall. Here,
the number “1” indicates there is only one critical
exploit from the Attacker to the Web Server, from
among the 3 total vulnerabilities on the Web Server.
Then, once inside, the attacker has unlimited
connectivity to the Mail Server (via the hub). In this
case, there is a vulnerable service on the Mail Server
that allows the attacker to compromise this critical host.

This attack graph shows how hosts on a network can
be exploited through multiple steps, even when the
attacker cannot access them directly. It is not directly
possible to compromise the Mail Server from the
outside because of the policy enforced by the firewall.

But our attack graph shows that the Mail Server can be
reached indirectly, through a sequence of two exploits.
From the outside, a traditional scanning tool like
Nessus reveals no Mail Server vulnerability.

Further, the attack graph shows that addressing a
single critical vulnerability (from among four) would
prevent the attack. Also, tools such as Nessus generate
many alerts that are merely informational (i.e.,
irrelevant to network penetration), while we carefully
excludes these from our database of modeled exploits.

While such a result may be easy enough for an
experienced analyst on a small network, for
maintaining a proactive security posture on realistic
networks an automated tool is crucial.

IV. PREDICTIVE ATTACK GRAPHS
For computing attack graphs for larger networks, we

need scalable mathematical representations and
algorithms. Modeling the attacker’s control over the
network as monotonic (increasing over time), we need
only represent the dependencies among exploits, rather
than explicitly enumerating every sequence of
exploits [6]. The resulting exploit-dependency attack
graphs grow only quadratically (as opposed to
exponentially) with the number of exploits, so that it
becomes feasible to apply them for realistic networks.

Fig. 4. Predictive network attack graph.

Based on a given attack scenario, the attack graph
can be constrained by specific starting and ending
points (as in the previous section). The scenario could
also be less constrained, such as finding all possible
attack starts leading to one or more goals, or finding all
possible paths from particular starting points.

We aggregate attack graphs, to help make them
understandable at a glance [7]. An important
aggregation abstraction is the protection domain, which
represents a set of machines that have full access to one
another’s vulnerabilities. In a raw (non-aggregated)
form, the graph would be fully connected within a
protection domain. Instead, we list the machines in a
protection domain, along with exploits against each of
their vulnerabilities. Then implicitly, once an attacker
takes control of a machine within a protection domain,
he can exploit all vulnerabilities on machines within it.
We thus need not explicitly list every n2 (fully-
connected) exploit dependency within the protection
domain, making complexity linear within the domain.

In our implementation of predictive attack graphs
(Fig. 4), a high-level overview displays attack
relationships among protection domains, which can be
opened individually or in groups for deeper views of
attack properties and relationships. In this process, no
graph information is lost; one has merely to expand a
folder to acquire information at a lower level.

A complete listing of exploits and associated details
for any selected component is available at all times.

This supports in-depth analysis of exploit details, while
overall topology and network relationships are kept
simple and understandable within the main graph view.

Our attack graph implementation also emulates the
hardening exploitable vulnerabilities, to study the
effects of remediation and what-if scenarios. Exploring
the attack graph, the analyst is often faced with multiple
options for remediation. This involves choosing a
machine or set of machines to protect (harden), or
identifying specific exploits to protect against.

We display the attack graph effects that occur when
a specific machine or protection domain is hardened or
when a specific exploit is neutralized. Hardened
elements are maintained in a log, e.g., for reporting.
We can also generate recommendations automatically,
i.e., first layer (from start), last layer (from goal), and
the optimal (minimum) set that that separates start from
goal [8].

To aid navigation, our implementation maintains a
global overview of the entire attack graph at all times,
which can be used to pan the main graph view. The
tool also has a graphical (tree) attack dictionary of all
graph elements. The various graph views are linked, so
that selecting an element in one view cause it to be
selected in all views. A variety of toolbars are available
for commonly used tools. This includes a suite of
interactive layout tools, with manual repositioning as
well as full-scale layout algorithms, continuously
available to restructure the display.

Fig. 5. Network for placing intrusion detection sensors.

V. OPTIMAL SENSOR PLACEMENT
At this point in the network defense process, we

have captured the network configuration, used it to
predict all possible paths of vulnerability through the
network, and applied hardening measures to help
reduce known paths. But because of real-world
mission and operational constraints, we are unlikely to
eliminate all paths. At this point, we can rely on
intrusion detection, guided by our predictive attack
graph.

Now, given the residual paths of vulnerability,
where should we place intrusion sensors to monitor all
these paths? In fact, how can we cover all critical paths
with the fewest number of sensors, to minimize our
deployment costs?

Consider the network in Fig. 5. There are 8 subnets,
with 10-20 hosts in each subnet, and routers (and the
internet backbone) providing connectivity among the
subnets. There are vulnerabilities on many hosts, and
firewalls (not shown) limit connectivity to help protect
the network.

The network in Fig. 5 is in two parts – our enterprise
network to defend, and a partner network that has been
given some access to our network (via the Internet). In
this scenario, we wish to protect a critical database
server (crown in Fig. 5).

α
β

γ δ

ε

Fig. 6. Predictive attack graph to be covered.

Fig. 6 shows a high-level view of network
vulnerability paths, based on our predictive attack
graph. This graph shows all possible paths leading to
our Server subnet, at the subnet-to-subnet (protection
domain) level. Here, an edge means there is at least one
exploit between given protection domains.

Each edge (set of attacks between a pair of domains)
in Fig. 6 is labeled with the set of network devices that
carry traffic between the pair of domains. For example,
traffic between hosts from Clients subnet to Servers
subnet flows through the Clients device, the Internal
device, and the Servers device. Each such device is a
potential location for placing an intrusion detection
sensor for monitoring potentially malicious traffic.

Given this knowledge of vulnerable paths through
the network, we wish to place sensors to cover all
paths. To minimize costs, we seek to cover all paths
(the full attack graph) using the least number of
sensors.

Our optimal sensor placement is an instance of the
classical set cover problem [9]. In set cover, we are
given certain sets of elements, and they may have
elements in common. The problem is to choose a
minimum number of those sets, so that they collectively
contain all the elements. In this case, the elements are
the edges (between protection domains) of the attack
graph, and the sets are sensors deployed on particular
network devices. Each sensor monitors a given set of
edges, i.e., can see the traffic between the given
attacker/victim machines.

Set cover is known to be computationally hard, one
of Karp’s original 21 NP-complete problems [10]. But
there is a well known polynomial-time greedy
algorithm for set cover that gives good results in
practice [9]. The greedy algorithm for set covering
follows this rule: at each stage, choose the set that
contains the largest number of uncovered elements.

In our case, each network device can see traffic for a
subset of the entire attack graph, i.e., each device covers
certain attack graph edges. For example, in Fig. 6, the
Partner Border device covers two attack graph edges:

 Partner Clients A hosts to DMZ hosts (edge α)
 Partner Servers hosts to Clients hosts (edge δ)

The problem is then to choose a minimum set of
network devices that cover all attack graph edges.
Indexing devices from Fig. 6, we have the following:

 Partner Internal covers {α, β, δ}
 Partner Border covers {α, δ}
 Border covers {α, δ, γ}
 Internal covers {γ, δ, ε}

α

β

γ

δ

ε

Fig. 7. Optimal placement of intrusion detection sensors.

A refinement of the greedy algorithm is to favor
large sets that contain infrequent elements. In this
example, the Partner Internal device covers a large set
(3 attack graph edges), with the infrequently covered
edge β (Partner Clients A hosts to Partner Servers
hosts) so we choose it first. In the next iteration, we
choose device Internal, which has the largest number of
uncovered elements, i.e., γ and ε.

At this point, we have covered all 5 edges in the
attack graph (Fig. 6). Our sensor-placement solution is
thus complete, as shown in Figure 7. Here, red eyes
show the optimal sensor locations at devices Partner
Internal and Internal. From the figure, superimposed
with attack graph edges, we see that sensors at these
two devices cover all attack graph edges.

In this instance, we have in fact found the optimal
solution. In general, the greedy algorithm approximates
the optimal solution within a factor of ln(n), for n attack
edges to be covered, though in practice it usually does
much better than this. In our case, n is the number of
attack graph edges aggregated by protection domains,
which is usually much smaller than the number of
edges between individual machines.

The greedy algorithm has been shown to be
essentially the best possible polynomial-time
approximation algorithm for general set cover [11].
However, for restricted cases in which each element

(per-domain edge) occurs in at most f sets (network
devices), a polynomial-time solution is possible that
approximates the optimum to within a factor of f.

Using appropriate data structures, the greedy
algorithm for set cover can be implemented in O(n),
where n is again the number of per-domain attack graph
edges. Set cover is a well-studied problem in computer
science, placing our approach to sensor placement via
predictive attack graphs on firm theoretical ground.

Traditionally, intrusion detection sensors are placed
at network perimeters, with the idea of detecting attacks
from the outside. But such deployment is limited,
because traffic in the vulnerable internal network is not
monitored. If an attacker avoids detection at the
perimeter, subsequent attack traffic in the internal
network is missed.

On the other hand, deploying sensors everywhere
may be cost prohibitive, and can overwhelm analysts
with floods of alerts. Our predictive attack graphs
strike a balance, in which we cover known residual
vulnerability paths, using the fewest sensors necessary.

VI. ATTACK CORRELATION AND RESPONSE
Our attack graphs identify critical vulnerability

paths and provide strategies for network hardening in
advance of attack. But because of operational
constraints such as availability of patches and the need

for offering mission-critical services, residual
vulnerability paths usually remain.

Our predictive attack graphs allow us to plan in
advance, and maintain a proactive security posture in
the face of attacks. Knowledge of network
vulnerability paths helps us prepare our defenses and
plan our responses, tailored to our network and its
critical assets. In particular, attack graphs provide the
necessary context for deploying and fine tuning of
intrusion detection systems, for correlating and
prioritizing intrusion alarms, and for responding to
attacks.

Once sensors are deployed and are generating
intrusion alarms, we can leverage predictive attack
graphs for intrusion alarm correlation and prioritization.
This requires mapping alarms to their corresponding
elements (exploits) in the residual attack graph. This in
turn requires a common alarm format, using identifiers
that match those in the attack graph model (exploit
database).

Specifications such as Intrusion Detection Message
Exchange Format [12] (IDMEF) or ArcSight [13] event
logs provide possible future integration for predictive
attack graphs. For example, there is an IDMEF
plugin [14] for the popular Snort intrusion detection
system [15].

Data exchanges in IDMEF are in XML, enforced
through a formal schema. Fig. 8 shows the XML
schema for an IDMEF alert. The IDMEF data model is
designed to accommodate alerts from heterogeneous
tools. The critical data for our attack graphs are source
and target (attacker and victim) network addresses, and
an alarm identifier that can be mapped to our exploit
database. In IDMEF, these are supported by the
Source, Target, and Classification elements
(respectively).

When intrusion alarms are generated, our predictive
attack graphs provide the necessary context for
correlating and prioritizing them. We can place a high
priority on alarms that lie on vulnerability paths
through our network. We can prioritize them even
further based on graph distance to given critical assets.
In other words, events that are very close to critical
assets (in terms of next attack steps) should be given
higher priority.

This kind of precise attack graph analysis determines
not only whether a host is vulnerable to a given attack,
but also whether the attacker can traverse through
firewalls to reach the host’s vulnerable port, and
whether that attack could lead to subsequent network
compromise. Our prioritization thus also serves as a
powerful form of false-alarm reduction, e.g., restriction
to alarms along critical paths.

Fig. 8. Message format for intrusion alerts.

It is important to predict network vulnerability
paths, as we do. Alarm correlation that does not take
network vulnerabilities into account is limited [16].
Pre-computing our predictive attack graphs in advance
of attack has the additional advantage of rapid
correlation, i.e., faster than an intrusion detection
system can generate them [4][17].

Our predictive attack graphs allow us to correlate
intrusion alarms based on attack causality. A set of
seemingly isolated events may in fact be shown as
multiple steps of incremental network penetration.
Also, the context provided by these attack graphs
allows us to predict missed events (false negatives),
helping to mitigate inaccuracies in our intrusion
detection systems [4].

Attack graph analysis and visualization need not be
limited to abstract cyber views. In many situations, it
may be important to understand the physical location of
attacks, for assessing threat sources and mission impact.
We can thus embed the predictive attack graph into a
geo-spatial visualization, as shown in Fig. 9.

Fig. 9. Geo-spatial attack graph view.

In this view, elements of the attack graph are
clustered around major geographic network, and graph
edges show exploits between those centers. Interactive
visualization capabilities can support drilldown for
further details at a desired level of resolution.

VII. SCALABILITY
For computing attack graphs, we need scalable

mathematical representations and algorithms. We
assume the attacker’s control over the network
increases monotonically over time [6]. This is the
conservative assumption that once an attacker gains
control of a network resource, there is no need to
relinquish it to further advance the attack.

Under this monotonicity, it is sufficient to represent
the dependencies among exploits, rather than explicitly
enumerating every sequence of exploits. The resulting
exploit-dependency attack graphs grow quadratically
rather than exponentially [18]. In particular, worst-case
complexity for n network hosts is O(n2). By grouping
hosts into protection domains, complexity is reduced to
O(n) within each domain [19]. In terms of the database
of potential attacker exploits, complexity is O(e), for e
exploits.

Fig. 10 shows attack graph computation times for
networks of various sizes. In each case, a subnet
contains 200 hosts, and each host has 5 vulnerabilities.
Each subnet has incoming vulnerable connections from
two other subnets, and symmetrically, outgoing
vulnerable connections to two other subnets. This is a
ring topology, in which the number of network
connections grows linearly with the number of subnets.
Thus it is not worst-case, in which network size grows
quadratically with the number of subnets.

From one subnet to another, there are 500
connections to vulnerabilities in the victim subnet.
Thus there are 2×500=1,000 incoming and
2×500=1,000 outgoing vulnerable connections (a grand
total of 2,000) for each subnet. Computation times
(total run time in seconds) are based on increasing
numbers of subnets, from 20 subnets (4,000 hosts) to
200 subnets (40,000 hosts). Run times are for a quad-
core Intel Xeon CPU at 1.86 GHz, with 4 GB RAM.

In this experiment, overall network size (number of
vulnerable connections) grows linearly with the number
of subnets (and hosts). This shows how graph
generation time depends proportionally on the size of
the input network. This excludes any time for
generating the input model (network and exploits)
itself, although this has the same worse-case
complexity, and can be created in advance. This also
excludes any time for placing intrusion detection
sensors, which has only linear complexity.

0

8

16

24

Number of Subnets

Co
m
pu

te
 T
im

e
(s
ec
on

ds
)

40,000
Hosts

Fig. 10. Computation time for attack graph generation.

Graph visual layout performance is a separate issue,
and is not included in the execution times of Fig. 10.
For example, computing graph visual layout for the
100-subnets case (20,000 hosts) takes 14 minutes. But
in all cases, once the initial layout is computed,
performance of user interaction (repositioning,
drilldown, etc.) is immediate.

Visual layout computation is needed for a cyber
view of network attack graphs. Such layout induces
spatial coordinates onto an abstract information graph.
But when we embed the attack graph in geo-spatial
visualizations such as Fig. 9, spatial coordinates are
already given. Thus no graph layout computation is
needed. In such cases, visualizing complex attack
graphs is much faster than for purely abstract cyber
views.

VIII. RELATED WORK
In other work, we have integrated with a number of

network tools for building predictive attack graphs,
including the Nessus, Retina [20], and FoundScan [21]
vulnerability scanners. We have also processed data
from the Sidewinder firewall [22] to capture network
connectivity to vulnerable host services, and have
integrated with Symantec Discovery asset inventory
[23] for gathering host configuration data. For
maintaining our database of modeled attacker exploits,
we rely on a number of sources, including NIST’s
National Vulnerability Database (NVD) [24], the
Bugtraq security database [25], the SecurityFocus
forum [26], the Open Source Vulnerability Database
(OSVDB) [27], and the Common Vulnerabilities and
Exposure (CVE) referencing standard [28], and
Symantec DeepSight [29].

Earliest approaches to attack graph generation are
generally based on explicit enumeration of attack states,
with scalability problems [30][31][32]. With the

practical assumption of monotonic logic, attack graph
complexity was shown to be polynomial rather than
exponential [6][33]. Graph complexity has been
further reduced, to worst-case quadratic in the number
of hosts [18][19]. By grouping hosts into protection
domains (e.g., subnets) as we do [19], complexity is
reduced to O(n) within each domain.

In general, attack graph research has largely focused
on scalability, with relatively little work on aspects of
model population. Notable exceptions include
[34][35][36], although these are more theoretical
frameworks than practical model population.
Commercial capabilities for attack graph analysis
remain limited, especially in the area of visualization
for large-scale graphs [37][38]. An annotated review
of attack graph research (as of 2005) is given in [39].

IX. SUMMARY AND CONCLUSIONS
Our predictive attack graphs are a powerful way of

understanding the context and relative importance of
vulnerabilities across systems and networks. These
graphs map all potential paths of vulnerability, showing
how attackers can penetrate through a network. Our
attack graphs identify critical vulnerabilities and
provide strategies for protection of critical network
assets. This allows us to harden the network before
attacks occur, to handle intrusion detection more
effectively, and to responding appropriately to attacks.

We model the network configuration, including
connectivity to vulnerable services. We then match the
network configuration against a database of modeled
attacker exploits, simulating multi-step attack
penetration. From the resulting attack graphs, we
compute recommendations for optimal network
hardening. We also provide sophisticated visualization
capabilities for interactive attack graph exploration.

By mapping our attack graphs to the network
topology and devices, we can deploy intrusion
detection sensors to cover all vulnerable paths, using
the minimum number of sensors. Our attack graphs
then provide the necessary context for correlating and
prioritizing intrusion alerts, based on known paths of
vulnerability through the network. Standardization of
alert data formats and models can facilitate integration
between our system and commodity intrusion detection
systems.

By mapping intrusion alarms to our predictive attack
graph, we can correlate alarms into multi-step attacks,
and prioritize alarms based on paths to critical network
assets. Knowledge of network vulnerability paths
allows us to formulate best options for responding to
attacks. Overall, our predictive attack graphs offer
powerful capabilities for proactive network defense.

ACKNOWLEDGMENTS
This material is based upon work supported by

Homeland Security Advanced Research Projects
Agency under the contract FA8750-05-C-0212
administered by the Air Force Research Laboratory
(Rome); by Air Force Research Laboratory (Rome)
under the contract FA8750-06-C-0246; by Federal
Aviation Administration under the contract DTFAWA-
08-F-GMU18; by Air Force Office of Scientific
Research under grants FA9550-07-1-0527 and
FA9550-08-1-0157; and by the National Science
Foundation under grants CT-0716567, CT-0716323,
and CT-0627493. Any opinions, findings, conclusions,
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the sponsoring organizations.

REFERENCES
[1] S. Jajodia, S. Noel, B. O’Berry, “Topological Analysis of

Network Attack Vulnerability,” in Managing Cyber Threats:
Issues, Approaches and Challenges, V. Kumar, J. Srivastava,
A. Lazarevic (eds.), Springer, 2005.

[2] S. Jajodia, S. Noel, “Topological Vulnerability Analysis: A
Powerful New Approach for Network Attack Prevention,
Detection, and Response,” Indian Statistical Institute
Monograph Series, World Scientific Press, 2008.

[3] S. Noel, S. Jajodia, “Optimal IDS Sensor Placement and Alert
Prioritization Using Attack Graphs,” Journal of Network and
Systems Management, September 2008.

[4] S. Noel, E. Robertson, S. Jajodia, “Correlating Intrusion Events
and Building Attack Scenarios through Attack Graph
Distances,” 20th Annual Computer Security Applications
Conference, 2004.

[5] Nessus Vulnerability Scanner, http://www.nessus.org.
[6] P. Ammann, D. Wijesekera, S. Kaushik, “Scalable, Graph-

Based Network Vulnerability Analysis,” ACM Conference on
Computer and Communications Security, 2002.

[7] S. Noel, M. Jacobs, P. Kalapa, S. Jajodia, “Multiple
Coordinated Views for Network Attack Graphs,” ACM
Workshop on Visualization for Computer Security, 2005.

[8] L. Wang, S. Noel, S. Jajodia, “Minimum-Cost Network
Hardening Using Attack Graphs,” Computer Communications,
29, 2006.

[9] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to
Algorithms, 2nd Edition, MIT Press and McGraw-Hill, 2001.

[10] R. Karp, “Reducibility among Combinatorial Problems,” in
Complexity of Computer Computations, 1972.

[11] U. Feige, “A Threshold of Ln N for Approximating Set Cover,”
Journal of the ACM, 45(4), 1998.

[12] Internet Engineering Task Force, The Intrusion Detection
Message Exchange Format, http://www.ietf.org/rfc/rfc4765.txt.

[13] ArcSight, Enterprise Security Management Product,
http://www.arcsight.com/.

[14] SourceForge, Snort Plugin for IDMEF Format,
http://sourceforge.net/projects/snort-idmef.

[15] Sourcefire, Snort – The De Facto Standard for Intrusion
Detection/Prevention, http://www.snort.org/.

[16] P. Ning, Y. Cui, D. Reeves, “Constructing Attack Scenarios
through Correlation of Intrusion Alerts,” ACM Conference on
Computer and Communications Security, 2002.

http://www.nessus.org/
http://www.ietf.org/rfc/rfc4765.txt
http://www.arcsight.com/
http://sourceforge.net/projects/snort-idmef
http://www.snort.org/

[17] L. Wang, A. Liu, S. Jajodia, “Using Attack Graphs for
Correlating, Hypothesizing, and Predicting Network Intrusion
Alerts,” Computer Communications, 29(15), 2006.

[18] S. Noel, J. Jajodia, “Understanding Complex Network Attack
Graphs through Clustered Adjacency Matrices,” 21st Annual
Computer Security Applications Conference, 2005.

[19] S. Noel, S. Jajodia, “Managing Attack Graph Complexity
through Visual Hierarchical Aggregation,” in Visualization and
Data Mining for Computer Security, 2004.

[20] Retina Security Scanner, http://www.eeye.com/.
[21] FoundScan, http://www.foundstone.com/.
[22] Sidewinder, http://www.securecomputing.com/.
[23] Discovery, http://www.centennial-software.com/.
[24] National Vulnerability Database, http://nvd.nist.gov/.
[25] Bugtraq, http://www.securityfocus.com/vulnerabilities.
[26] Security Focus, http://www.securityfocus.com/.
[27] Open Source Vulnerability Database, http://osvdb.org/ .
[28] Common Vulnerabilities and Exposures, http://cve.mitre.org/.
[29] Symantec DeepSight Threat Management System,

https://tms.symantec.com/Default.aspx.
[30] C. Phillips, L. Swiler, “A Graph-Based System for Network-

Vulnerability Analysis,” New Security Paradigms Workshop,
1998.

[31] R. Ritchey, P. Ammann, “Using Model Checking to Analyze
Network Vulnerabilities,” IEEE Symposium on Security and
Privacy, 2000.

[32] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. Wing,
“Automated Generation and Analysis of Attack Graphs,” IEEE
Symposium on Security and Privacy, 2002.

[33] R. Lippmann, K. Ingols, C. Scott, K. Piwowarski, K.
Kratkiewicz, M. Artz, R. Cunningham, “Validating and
Restoring Defense in Depth Using Attack Graphs,” MILCOM
Military Communications Conference, 2006.

[34] F. Cuppens, R. Ortalo, “LAMBDA: A Language to Model a
Database for Detection of Attacks,” Workshop on Recent
Advances in Intrusion Detection, 2000.

[35] S. Templeton, K. Levitt, “A Requires/Provides Model for
Computer Attacks,” New Security Paradigms Workshop, 2000.

[36] R. Ritchey, B. O’Berry, S. Noel, “Representing TCP/IP
Connectivity for Topological Analysis of Network Security,”
18th Annual Computer Security Applications Conference, 2002.

[37] Skybox Security, http://www.skyboxsecurity.com/.
[38] RedSeal Systems, http://www.redseal.net/.
[39] R. Lippmann, K. Ingols, “An Annotated Review of Past Papers

on Attack Graphs,” Lincoln Laboratory Technical Report ESC-
TR-2005-054, 2005.

http://www.eeye.com/
http://www.foundstone.com/
http://www.securecomputing.com/
http://www.centennial-software.com/
http://nvd.nist.gov/
http://www.securityfocus.com/vulnerabilities
http://www.securityfocus.com/
http://osvdb.org/
http://cve.mitre.org/
https://tms.symantec.com/Default.aspx
http://www.skyboxsecurity.com/
http://www.redseal.net/

