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Abstract – Network security tools generally lack 

sufficient context for maintaining a well informed and 
proactive defense posture.  Vulnerabilities are usually 
assessed in isolation, without considering how they 
contribute to overall attack risk.  Similarly, intrusion 
alarms are logged as isolated events, with limited 
correlation capabilities.  Security professionals are often 
overwhelmed by constant threats, complexity of security 
data, and network growth.  Our approach to network 
defense applies attack graphs for advanced vulnerability 
analysis and intrusion detection.  A ttack graphs map 
paths of vulnerability, showing how attackers can 
incrementally penetrate a network.  W e can then identify 
critical vulnerabilities and provide strategies for 
protection of critical network assets.  Because of 
operational constraints, vulnerability paths may often 
remain.  The residual attack graph then guides optimal 
intrusion detection and attack response.  This includes 
optimal placement of intrusion detection sensors, 
correlating intrusion alarms, accounting for missed 
detections, prioritizing alarms, and predicting next 
possible attack steps. 

I.  INTRODUCTION 
It is inherently difficult to secure computer networks 

against attack.  Without adequate tool support, network 
security is labor-intensive and error prone, because of 
the complexity, volume, and frequent changes in 
security data and network configurations.  Software 
vulnerabilities are commonplace, patches are often 
unavailable, and many protocols are insecure. 

Moreover, security concerns are interdependent 
across the network.  Attackers can attack vulnerable 
machines and use them as stepping stones to further 
penetrate a network and compromise critical systems.  
But today’s security tools are generally point solutions, 
giving few clues for strategic network defenses.  It often 
remains a difficult exercise to combine results from 
multiple tools and data sources to mount defenses.  It 
can be challenging for even experienced analysts to 
recognize multi-step attack risks, and to understand 
which vulnerabilities really are acceptable risks.  This 
kind of analysis is especially challenging for large 
dynamically evolving networks. 

By knowing the paths of vulnerability through our 
networks, we can reduce the impact of attacks.  But 

traditional network vulnerability assessment tools 
simply scan individual machines on a network and 
report possible security problems.  They give little 
guidance as to how attackers might exploit 
combinations of vulnerabilities among multiple hosts to 
advance an attack on a network.  Without this 
knowledge, we cannot optimize our defenses, because 
vulnerabilities in isolation lack context. 

To address these weaknesses, we capture the 
network configuration, (topology, connectivity limiting 
devices such as firewalls, vulnerable services, etc).  We 
then match the network configuration to known 
attacker exploits, simulating attack penetration through 
the network and predicting attack paths leading to 
compromise of mission-critical assets.    The resulting 
set of all possible attack paths, organized as an attack 
graph, constitutes a predictive roadmap of potential 
attacks. 

Our attack graphs provide context for individual 
vulnerabilities, and support strategic vulnerability risk 
analysis.  Critical combinations of vulnerabilities are 
identified for optimal network hardening, minimizing 
any potentially disruptive changes to the network. 

Still, because of operational constraints (availability 
of patches, need to offer critical services, etc.), some 
residual network vulnerability usually remains.  In such 
cases, attack graphs support proactive measures that 
reduce the impact of attacks, and guide our responses.  
First, we can use the attack graphs to determine optimal 
locations for intrusion sensors, to cover known paths of 
vulnerability, while minimizing the number of 
deployed sensors. 

Then, through the predictive power of our attack 
graphs, we can tune intrusion detection to focus on 
known vulnerability paths.  We can also correlate 
isolated intrusion alarms into multi-steep coordinated 
attacks.  Further, we can prioritize alerts based on 
incremental penetration and closeness to critical 
network assets.  We can also predict next possible 
attack steps for optimal response. 

The next section gives an overview of our approach 
for predictive attack graph analysis.  Section 3 
illustrates the approach through a simple example.  
Section 4 describes our working system for predictive 



attack graph analysis.  Section 5 examines how this 
system can be extended for optimal placement of 
intrusion detection sensors, and Section 6 shows how 
our attack graphs provide context for attack correlation 
and response.  Section 7 reviews related work, and 
Section 8 summarizes our approach. 

II.  OVERVIEW OF APPROACH 
Our approach is to capture the network 

configuration, from which we predict attack paths 
through the network.  We then use the predicted paths 
(attack graph) for network hardening, intrusion sensor 
placement, alarm prioritization, and attack response. 

As shown in Fig. 1, we scan the network to discover 
hosts, operating systems, application programs, 
vulnerable network services, etc.  We also capture 
network connectivity, including the connectivity-
limiting effects of devices such as firewalls and router 
access control lists. 

We apply the network data to an attack prediction 
engine, using a database of modeled attacker exploits.  
For assumed threat source(s) and/or critical network 
asset(s) to protect, we predict multi-step attacks through 
the network.  This attack graph, computed in worst-case 
quadratic time [1][2], represents all known attack paths 
through the network. 

The resulting attack graph then supports proactive 
network defenses.  In particular, from the graph we 
formulate optimal network hardening strategies.  Then, 
for any residual vulnerability paths, we place intrusion 
sensors in the network to cover all paths, using the 
minimum number of sensors [3]. 

We also fine-tune the intrusion detection system by 
focusing on known vulnerability paths.  We can then 
correlate resulting intrusion alarms with known 
vulnerability paths, thus detecting coordinated multi-
step attacks [4].  We can also raise priority for such 
coordinated attacks, especially when they lie on paths 
to critical network assets. 
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Fig. 1.  System overview. 

The attack graph also provides the context needed 
for responding appropriately to attacks.  When we 
know the possible vulnerability paths, we can restrict 
our responses to exactly what prevents further 
penetration. 

III.  ILLUSTRATIVE EXAMPLE 
Fig. 2 shows a small network for demonstrating our 

generation of network attack graphs.  In this network, 
the firewall protects the internal network from outside 
attack.  It is configured to allow only hypertext transfer 
protocol (HTTP) traffic to the internal Web Server, and 
all other traffic initiated from the outside is blocked. 

The Web Server is running a vulnerable version of 
Microsoft Internet Information Server (IIS), which is 
reachable from the outside through the firewall.  The 
Mail Server has vulnerable software as well, although 
the firewall protects it from being attacked from the 
outside directly.  The question is whether there are 
attack paths that allow the outside Attacker to 
compromise the Mail Server. 

For this example, we need to capture elements of the 
network configuration relevant to attack penetration.  
This includes the existence of vulnerable software 
(services) on hosts, as well as connectivity allowed to 
vulnerable services.  We also need a set of potential 
attacker exploits that may work against the vulnerable 
services. 

For example, we could run a vulnerability scanning 
tool (e.g., Nessus [5]) against the hosts in the internal 
network to map their vulnerabilities, and feed this into 
the model.  We could then rely on a database of 
modeled exploits based on the full set of vulnerabilities 
detected by Nessus.  To incorporate the connectivity-
limiting effects of the firewall, we could scan through 
the firewall (as well as behind it), to implicitly capture 
firewall effects, or process the firewall rules directly. 
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Fig. 2.  Small example network. 



 
Fig. 3.  Attack graph for example network. 

Fig. 3 shows the resulting attack graph for this small 
example.  There is indeed a multi-step path from the 
outside to the Mail Server. 

In the first step, the attacker exploits the IIS 
vulnerability that is exposed through the firewall.  Here, 
the  number  “1”  indicates  there  is  only  one  critical 
exploit from the Attacker to the Web Server, from 
among the 3 total vulnerabilities on the Web Server.  
Then, once inside, the attacker has unlimited 
connectivity to the Mail Server (via the hub).  In this 
case, there is a vulnerable service on the Mail Server 
that allows the attacker to compromise this critical host. 

This attack graph shows how hosts on a network can 
be exploited through multiple steps, even when the 
attacker cannot access them directly.  It is not directly 
possible to compromise the Mail Server from the 
outside because of the policy enforced by the firewall.  

But our attack graph shows that the Mail Server can be 
reached indirectly, through a sequence of two exploits.  
From the outside, a traditional scanning tool like 
Nessus reveals no Mail Server vulnerability. 

Further, the attack graph shows that addressing a 
single critical vulnerability (from among four) would 
prevent the attack.  Also, tools such as Nessus generate 
many alerts that are merely informational (i.e., 
irrelevant to network penetration), while we carefully 
excludes these from our database of modeled exploits. 

While such a result may be easy enough for an 
experienced analyst on a small network, for 
maintaining a proactive security posture on realistic 
networks an automated tool is crucial. 

IV.  PREDICTIVE ATTACK GRAPHS 
For computing attack graphs for larger networks, we 

need scalable mathematical representations and 
algorithms.    Modeling  the  attacker’s  control  over  the 
network as monotonic (increasing over time), we need 
only represent the dependencies among exploits, rather 
than explicitly enumerating every sequence of 
exploits [6].  The resulting exploit-dependency attack 
graphs grow only quadratically (as opposed to 
exponentially) with the number of exploits, so that it 
becomes feasible to apply them for realistic networks. 

 
Fig. 4.  Predictive network attack graph.



Based on a given attack scenario, the attack graph 
can be constrained by specific starting and ending 
points (as in the previous section).  The scenario could 
also be less constrained, such as finding all possible 
attack starts leading to one or more goals, or finding all 
possible paths from particular starting points. 

We aggregate attack graphs, to help make them 
understandable at a glance [7].  An important 
aggregation abstraction is the protection domain, which 
represents a set of machines that have full access to one 
another’s  vulnerabilities.    In  a  raw  (non-aggregated) 
form, the graph would be fully connected within a 
protection domain.  Instead, we list the machines in a 
protection domain, along with exploits against each of 
their vulnerabilities.  Then implicitly, once an attacker 
takes control of a machine within a protection domain, 
he can exploit all vulnerabilities on machines within it.  
We thus need not explicitly list every n2 (fully-
connected) exploit dependency within the protection 
domain, making complexity linear within the domain. 

In our implementation of predictive attack graphs 
(Fig. 4), a high-level overview displays attack 
relationships among protection domains, which can be 
opened individually or in groups for deeper views of 
attack properties and relationships.  In this process, no 
graph information is lost; one has merely to expand a 
folder to acquire information at a lower level. 

A complete listing of exploits and associated details 
for any selected component is available at all times.  

This supports in-depth analysis of exploit details, while 
overall topology and network relationships are kept 
simple and understandable within the main graph view. 

Our attack graph implementation also emulates the 
hardening exploitable vulnerabilities, to study the 
effects of remediation and what-if scenarios.  Exploring 
the attack graph, the analyst is often faced with multiple 
options for remediation.  This involves choosing a 
machine or set of machines to protect (harden), or 
identifying specific exploits to protect against. 

We display the attack graph effects that occur when 
a specific machine or protection domain is hardened or 
when a specific exploit is neutralized.  Hardened 
elements are maintained in a log, e.g., for reporting.  
We can also generate recommendations automatically, 
i.e., first layer (from start), last layer (from goal), and 
the optimal (minimum) set that that separates start from 
goal [8]. 

To aid navigation, our implementation maintains a 
global overview of the entire attack graph at all times, 
which can be used to pan the main graph view.  The 
tool also has a graphical (tree) attack dictionary of all 
graph elements.  The various graph views are linked, so 
that selecting an element in one view cause it to be 
selected in all views.  A variety of toolbars are available 
for commonly used tools.  This includes a suite of 
interactive layout tools, with manual repositioning as 
well as full-scale layout algorithms, continuously 
available to restructure the display. 

 
Fig. 5.  Network for placing intrusion detection sensors.



V.  OPTIMAL SENSOR PLACEMENT 
At this point in the network defense process, we 

have captured the network configuration, used it to 
predict all possible paths of vulnerability through the 
network, and applied hardening measures to help 
reduce known paths.  But because of real-world 
mission and operational constraints, we are unlikely to 
eliminate all paths.  At this point, we can rely on 
intrusion detection, guided by our predictive attack 
graph. 

Now, given the residual paths of vulnerability, 
where should we place intrusion sensors to monitor all 
these paths?  In fact, how can we cover all critical paths 
with the fewest number of sensors, to minimize our 
deployment costs? 

Consider the network in Fig. 5.  There are 8 subnets, 
with 10-20 hosts in each subnet, and routers (and the 
internet backbone) providing connectivity among the 
subnets.  There are vulnerabilities on many hosts, and 
firewalls (not shown) limit connectivity to help protect 
the network. 

The network in Fig. 5 is in two parts – our enterprise 
network to defend, and a partner network that has been 
given some access to our network (via the Internet).  In 
this scenario, we wish to protect a critical database 
server (crown in Fig. 5). 

α
β

γ δ

ε

 
Fig. 6.  Predictive attack graph to be covered. 

Fig. 6 shows a high-level view of network 
vulnerability paths, based on our predictive attack 
graph.  This graph shows all possible paths leading to 
our Server subnet, at the subnet-to-subnet (protection 
domain) level.  Here, an edge means there is at least one 
exploit between given protection domains. 

Each edge (set of attacks between a pair of domains) 
in Fig. 6 is labeled with the set of network devices that 
carry traffic between the pair of domains.  For example, 
traffic between hosts from Clients subnet to Servers 
subnet flows through the Clients device, the Internal 
device, and the Servers device.  Each such device is a 
potential location for placing an intrusion detection 
sensor for monitoring potentially malicious traffic. 

Given this knowledge of vulnerable paths through 
the network, we wish to place sensors to cover all 
paths.  To minimize costs, we seek to cover all paths 
(the full attack graph) using the least number of 
sensors. 

Our optimal sensor placement is an instance of the 
classical set cover problem [9].  In set cover, we are 
given certain sets of elements, and they may have 
elements in common.  The problem is to choose a 
minimum number of those sets, so that they collectively 
contain all the elements.  In this case, the elements are 
the edges (between protection domains) of the attack 
graph, and the sets are sensors deployed on particular 
network devices.  Each sensor monitors a given set of 
edges, i.e., can see the traffic between the given 
attacker/victim machines. 

Set cover is known to be computationally hard, one 
of Karp’s original 21 NP-complete problems [10].  But 
there is a well known polynomial-time greedy 
algorithm for set cover that gives good results in 
practice [9].  The greedy algorithm for set covering 
follows this rule: at each stage, choose the set that 
contains the largest number of uncovered elements. 

In our case, each network device can see traffic for a 
subset of the entire attack graph, i.e., each device covers 
certain attack graph edges.  For example, in Fig. 6, the 
Partner Border device covers two attack graph edges: 

 Partner Clients A hosts to DMZ hosts (edge α) 
 Partner Servers hosts to Clients hosts (edge δ) 

The problem is then to choose a minimum set of 
network devices that cover all attack graph edges.  
Indexing devices from Fig. 6, we have the following: 

 Partner Internal covers {α, β, δ} 
 Partner Border covers {α, δ} 
 Border covers {α, δ, γ} 
 Internal covers {γ, δ, ε} 
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Fig. 7.  Optimal placement of intrusion detection sensors.

A refinement of the greedy algorithm is to favor 
large sets that contain infrequent elements.  In this 
example, the Partner Internal device covers a large set 
(3 attack graph edges), with the infrequently covered 
edge β (Partner Clients A hosts to Partner Servers 
hosts) so we choose it first.  In the next iteration, we 
choose device Internal, which has the largest number of 
uncovered elements, i.e., γ and ε. 

At this point, we have covered all 5 edges in the 
attack graph (Fig. 6).  Our sensor-placement solution is 
thus complete, as shown in Figure 7.  Here, red eyes 
show the optimal sensor locations at devices Partner 
Internal and Internal.  From the figure, superimposed 
with attack graph edges, we see that sensors at these 
two devices cover all attack graph edges. 

In this instance, we have in fact found the optimal 
solution.  In general, the greedy algorithm approximates 
the optimal solution within a factor of ln(n), for n attack 
edges to be covered, though in practice it usually does 
much better than this.  In our case, n is the number of 
attack graph edges aggregated by protection domains, 
which is usually much smaller than the number of 
edges between individual machines. 

The greedy algorithm has been shown to be 
essentially the best possible polynomial-time 
approximation algorithm for general set cover [11].  
However, for restricted cases in which each element 

(per-domain edge) occurs in at most f sets (network 
devices), a polynomial-time solution is possible that 
approximates the optimum to within a factor of f. 

Using appropriate data structures, the greedy 
algorithm for set cover can be implemented in O(n), 
where n is again the number of per-domain attack graph 
edges.  Set cover is a well-studied problem in computer 
science, placing our approach to sensor placement via 
predictive attack graphs on firm theoretical ground. 

Traditionally, intrusion detection sensors are placed 
at network perimeters, with the idea of detecting attacks 
from the outside.  But such deployment is limited, 
because traffic in the vulnerable internal network is not 
monitored.  If an attacker avoids detection at the 
perimeter, subsequent attack traffic in the internal 
network is missed. 

On the other hand, deploying sensors everywhere 
may be cost prohibitive, and can overwhelm analysts 
with floods of alerts.  Our predictive attack graphs 
strike a balance, in which we cover known residual 
vulnerability paths, using the fewest sensors necessary. 

VI.  ATTACK CORRELATION AND RESPONSE 
Our attack graphs identify critical vulnerability 

paths and provide strategies for network hardening in 
advance of attack.  But because of operational 
constraints such as availability of patches and the need 



for offering mission-critical services, residual 
vulnerability paths usually remain. 

Our predictive attack graphs allow us to plan in 
advance, and maintain a proactive security posture in 
the face of attacks.  Knowledge of network 
vulnerability paths helps us prepare our defenses and 
plan our responses, tailored to our network and its 
critical assets.  In particular, attack graphs provide the 
necessary context for deploying and fine tuning of 
intrusion detection systems, for correlating and 
prioritizing intrusion alarms, and for responding to 
attacks. 

Once sensors are deployed and are generating 
intrusion alarms, we can leverage predictive attack 
graphs for intrusion alarm correlation and prioritization.  
This requires mapping alarms to their corresponding 
elements (exploits) in the residual attack graph.  This in 
turn requires a common alarm format, using identifiers 
that match those in the attack graph model (exploit 
database). 

Specifications such as Intrusion Detection Message 
Exchange Format [12] (IDMEF) or ArcSight [13] event 
logs provide possible future integration for predictive 
attack graphs.  For example, there is an IDMEF 
plugin [14] for the popular Snort intrusion detection 
system [15]. 

Data exchanges in IDMEF are in XML, enforced 
through a formal schema.  Fig. 8 shows the XML 
schema for an IDMEF alert.  The IDMEF data model is 
designed to accommodate alerts from heterogeneous 
tools.  The critical data for our attack graphs are source 
and target (attacker and victim) network addresses, and 
an alarm identifier that can be mapped to our exploit 
database.  In IDMEF, these are supported by the 
Source, Target, and Classification elements 
(respectively). 

When intrusion alarms are generated, our predictive 
attack graphs provide the necessary context for 
correlating and prioritizing them.  We can place a high 
priority on alarms that lie on vulnerability paths 
through our network.  We can prioritize them even 
further based on graph distance to given critical assets.  
In other words, events that are very close to critical 
assets (in terms of next attack steps) should be given 
higher priority. 

This kind of precise attack graph analysis determines 
not only whether a host is vulnerable to a given attack, 
but also whether the attacker can traverse through 
firewalls  to  reach  the  host’s  vulnerable  port,  and 
whether that attack could lead to subsequent network 
compromise.  Our prioritization thus also serves as a 
powerful form of false-alarm reduction, e.g., restriction 
to alarms along critical paths. 

 
Fig. 8.  Message format for intrusion alerts. 

It is important to predict network vulnerability 
paths, as we do.  Alarm correlation that does not take 
network vulnerabilities into account is limited [16].  
Pre-computing our predictive attack graphs in advance 
of attack has the additional advantage of rapid 
correlation, i.e., faster than an intrusion detection 
system can generate them [4][17]. 

Our predictive attack graphs allow us to correlate 
intrusion alarms based on attack causality.  A set of 
seemingly isolated events may in fact be shown as 
multiple steps of incremental network penetration.  
Also, the context provided by these attack graphs 
allows us to predict missed events (false negatives), 
helping to mitigate inaccuracies in our intrusion 
detection systems [4]. 

Attack graph analysis and visualization need not be 
limited to abstract cyber views.  In many situations, it 
may be important to understand the physical location of 
attacks, for assessing threat sources and mission impact.  
We can thus embed the predictive attack graph into a 
geo-spatial visualization, as shown in Fig. 9. 

 
Fig. 9.  Geo-spatial attack graph view. 



In this view, elements of the attack graph are 
clustered around major geographic network, and graph 
edges show exploits between those centers.  Interactive 
visualization capabilities can support drilldown for 
further details at a desired level of resolution. 

VII.  SCALABILITY 
For computing attack graphs, we need scalable 

mathematical representations and algorithms.  We 
assume the attacker’s  control  over  the  network 
increases monotonically over time [6].  This is the 
conservative assumption that once an attacker gains 
control of a network resource, there is no need to 
relinquish it to further advance the attack. 

Under this monotonicity, it is sufficient to represent 
the dependencies among exploits, rather than explicitly 
enumerating every sequence of exploits.  The resulting 
exploit-dependency attack graphs grow quadratically 
rather than exponentially [18].  In particular, worst-case 
complexity for n network hosts is O(n2).  By grouping 
hosts into protection domains, complexity is reduced to 
O(n) within each domain [19].  In terms of the database 
of potential attacker exploits, complexity is O(e), for e 
exploits. 

Fig. 10 shows attack graph computation times for 
networks of various sizes.  In each case, a subnet 
contains 200 hosts, and each host has 5 vulnerabilities.  
Each subnet has incoming vulnerable connections from 
two other subnets, and symmetrically, outgoing 
vulnerable connections to two other subnets.  This is a 
ring topology, in which the number of network 
connections grows linearly with the number of subnets.  
Thus it is not worst-case, in which network size grows 
quadratically with the number of subnets. 

From one subnet to another, there are 500 
connections to vulnerabilities in the victim subnet.  
Thus there are 2×500=1,000 incoming and 
2×500=1,000 outgoing vulnerable connections (a grand 
total of 2,000) for each subnet.  Computation times 
(total run time in seconds) are based on increasing 
numbers of subnets, from 20 subnets (4,000 hosts) to 
200 subnets (40,000 hosts).  Run times are for a quad-
core Intel Xeon CPU at 1.86 GHz, with 4 GB RAM. 

In this experiment, overall network size (number of 
vulnerable connections) grows linearly with the number 
of subnets (and hosts).  This shows how graph 
generation time depends proportionally on the size of 
the input network.  This excludes any time for 
generating the input model (network and exploits) 
itself, although this has the same worse-case 
complexity, and can be created in advance.  This also 
excludes any time for placing intrusion detection 
sensors, which has only linear complexity. 
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Fig. 10.  Computation time for attack graph generation. 

Graph visual layout performance is a separate issue, 
and is not included in the execution times of Fig. 10.  
For example, computing graph visual layout for the 
100-subnets case (20,000 hosts) takes 14 minutes.  But 
in all cases, once the initial layout is computed, 
performance of user interaction (repositioning, 
drilldown, etc.) is immediate. 

Visual layout computation is needed for a cyber 
view of network attack graphs.  Such layout induces 
spatial coordinates onto an abstract information graph.  
But when we embed the attack graph in geo-spatial 
visualizations such as Fig. 9, spatial coordinates are 
already given.  Thus no graph layout computation is 
needed.  In such cases, visualizing complex attack 
graphs is much faster than for purely abstract cyber 
views. 

VIII.  RELATED WORK 
In other work, we have integrated with a number of 

network tools for building predictive attack graphs, 
including the Nessus, Retina [20], and FoundScan [21] 
vulnerability scanners.  We have also processed data 
from the Sidewinder firewall [22] to capture network 
connectivity to vulnerable host services, and have 
integrated with Symantec Discovery asset inventory 
[23] for gathering host configuration data.  For 
maintaining our database of modeled attacker exploits, 
we  rely  on  a  number  of  sources,  including  NIST’s 
National Vulnerability Database (NVD) [24], the 
Bugtraq security database [25], the SecurityFocus 
forum [26], the Open Source Vulnerability Database 
(OSVDB) [27], and the Common Vulnerabilities and 
Exposure (CVE) referencing standard [28], and 
Symantec DeepSight [29]. 

Earliest approaches to attack graph generation are 
generally based on explicit enumeration of attack states, 
with scalability problems [30][31][32].  With the 



practical assumption of monotonic logic, attack graph 
complexity was shown to be polynomial rather than 
exponential [6][33].  Graph complexity has been 
further reduced, to worst-case quadratic in the number 
of hosts [18][19].  By grouping hosts into protection 
domains (e.g., subnets) as we do [19], complexity is 
reduced to O(n) within each domain. 

In general, attack graph research has largely focused 
on scalability, with relatively little work on aspects of 
model population.  Notable exceptions include 
[34][35][36], although these are more theoretical 
frameworks than practical model population.  
Commercial capabilities for attack graph analysis 
remain limited, especially in the area of visualization 
for large-scale graphs [37][38].  An annotated review 
of attack graph research (as of 2005) is given in [39]. 

IX.  SUMMARY AND CONCLUSIONS 
Our predictive attack graphs are a powerful way of 

understanding the context and relative importance of 
vulnerabilities across systems and networks.  These 
graphs map all potential paths of vulnerability, showing 
how attackers can penetrate through a network.  Our 
attack graphs identify critical vulnerabilities and 
provide strategies for protection of critical network 
assets.  This allows us to harden the network before 
attacks occur, to handle intrusion detection more 
effectively, and to responding appropriately to attacks. 

We model the network configuration, including 
connectivity to vulnerable services.  We then match the 
network configuration against a database of modeled 
attacker exploits, simulating multi-step attack 
penetration.  From the resulting attack graphs, we 
compute recommendations for optimal network 
hardening.  We also provide sophisticated visualization 
capabilities for interactive attack graph exploration. 

By mapping our attack graphs to the network 
topology and devices, we can deploy intrusion 
detection sensors to cover all vulnerable paths, using 
the minimum number of sensors.  Our attack graphs 
then provide the necessary context for correlating and 
prioritizing intrusion alerts, based on known paths of 
vulnerability through the network.  Standardization of 
alert data formats and models can facilitate integration 
between our system and commodity intrusion detection 
systems. 

By mapping intrusion alarms to our predictive attack 
graph, we can correlate alarms into multi-step attacks, 
and prioritize alarms based on paths to critical network 
assets.  Knowledge of network vulnerability paths 
allows us to formulate best options for responding to 
attacks.  Overall, our predictive attack graphs offer 
powerful capabilities for proactive network defense. 
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