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Abstract 

 
In order to achieve the full transformational 

promise of Sea Power 21 and net-centric warfare, a 
highly efficient and adaptable service oriented 
architecture (SOA) is required.  We propose an XML-
based language to enable heterogeneous distributed 
systems to dynamically modify the application-layer 
network protocol in an SOA at runtime and without 
individual service-client agreements.  We argue that an 
SOA that supports dynamic protocols can operate 
more efficiently and is more agile and spontaneous 
than an architecture based on standardized messaging 
such as Web Services. We provide an overview of the 
XML-based language called the Application Logic 
Markup Language (ALML) and our innovative 
approach to an SOA that supports multiple protocols 
in heterogeneous systems; ALML lays the foundation 
for a truly dynamic, interoperable, and adaptable 
SOA. 
 
1. Introduction 

From the remote procedure call (RPC) systems of 
the mid-1970’s  and  1980’s,  through  the Common 
Object Request Broker Architecture (CORBA) in the 
1990’s,  to the concept of Web services today 
(including SOAP-based, XML-RPC-based, and those 
following REST principles), the main concept 
underlying most heterogeneous distributed computing 
systems (DCS) has remained largely unchanged for 
three decades or more: they achieve inter-process 
communication via standardized message passing [1].  
The benefit is that clients and services can statically 
link in libraries that produce and consume the 
standardized messages and are able to communicate 
with any other process that also produces and 
consumes the messages.  The messages are simply a 

standardized application-layer protocol for exchanging 
data and requests.   

Any protocol will have biases introduced at design 
time.  Protocol designers must make decisions that will 
affect attributes such as complexity (in both space and 
time) and extensibility.  Any large-scale, standardized 
protocol must favor generality over efficiency.  The 
protocol will be designed for the average case and will 
be unable to take advantage of (or compensate for) 
application-specific knowledge about specialized 
processing, component capabilities, expected usage 
patterns, data priority, etc.  This deficiency is 
magnified in DCS such as sensor networks that operate 
over unreliable and low bandwidth connections, with 
limited hardware, and using battery power. 

We propose an architecture that will allow DCS to 
move away from static, standardized messaging and 
toward dynamic application layer protocols.  This 
flexibility will allow systems to tune the application 
layer protocols to their specific requirements and 
constraints. 

For the remainder of this paper, we will refer to the 
application  layer  protocol  simply  as  the  “protocol”.  
We will focus on improving the application layer 
exchange.  We assume lower-level protocols that 
provide connectivity between two executing processes 
over a communications link are pre-established.   

Section 2 provides the motivation for our approach 
that is explained in Section 3. The application logic 
markup language (ALML) that supports the dynamic 
logic sharing is explained in Section 4. Section 5 
discusses the performance improvement possible with 
our approach. Section 6 compares the related work, 
followed by future directions in Section 7 and a 
summary in Section 9. 
 



2. Motivation 
Auerbach and Russell [2] divided distributed 

computing systems into two broad categories: 
distributed programming languages and interface 
definition language (IDL)-based programming.  In both 
cases, the system consists of a marshaling subsystem. 
IDL-based systems translate the user-defined interface 
into the marshalling subsystem.  Distributed 
programming languages often automate the marshalling 
within the language or with a language extension.  For 
the purpose of this paper we will not concern ourselves 
with distributed programming languages.  In general, 
distributed programming languages only interoperate 
with other systems implemented in the same distributed 
language; in this paper we are concerned with 
heterogeneous systems. 

While the protocols and implementations may vary 
across IDL-based systems, high-level views of the 
architectures look quite similar.  In general, an 
interface is defined for  some  capability  or  “service”.  
From that interface server-side and client-side libraries 
are created.  Figure 1 shows the general flow of 
information for a single request in an IDL-based DCS 
system.  The arrows are numbered in increasing order 
in which information flows.  The lighter gray area on 
the left represents the client-side library while the 
darker gray area on the right represents the server-side 
library.  The client-side library contains stubs that 
implement the service interface by marshalling requests 
to the server-side and unmarshaling the server-side 
responses for the calling client code.  In this paper, we 
will refer to the client-side marshalling subsystem as 
the “proxy” since it acts on behalf of the service within 
the  client’s  address  space.    The server-side library 
listens for client requests, unmarshals those requests, 
invokes code provided by the service implementer to 
actually handle the requests, and marshals the 
responses back to the client.  These libraries are 
normally automatically generated by a tool that 
processes the interface definition. 

 

 
 

Figure 1: General IDL-based DCS request 

 
Since the messages flowing between the separate 

address spaces are standardized, heterogeneity is 
achieved.  It does not matter what hardware, operating 
system, or language exists on either side.  As long as 
both sides adhere to the message specification they will 
be able to communicate with each other.  Each side 
statically links to the appropriate library to manage the 
exchange of messages. 

This interoperability comes at a price.  Since the 
messages are standardized and based on the interface, 
changing what flows between the address spaces 
requires a change in the interface itself.  This change 
affects all previously developed service 
implementations and client applications.  Furthermore 
the message passing standards must favor generality 
over other considerations such as efficiency and 
performance in their definitions. 

Conversely, an architecture that enables dynamic 
protocols will allow services and clients to determine 
the best protocol at runtime based on the current 
operating context.  The in situ values of available 
attributes can be considered and any controllable 
aspect can be optimized.  These factors may include the 
participating  components’  capabilities and limitations, 
current network topology and load, the overall system’s 
goals and constraints, task priorities, latency 
thresholds, etc.  By tuning protocols to remove 
inefficiencies in the process, overall system 
performance can be improved.  Also, by allowing 
updates to protocol after deployment of services and 
clients, the DCS will be more capable of adapting to 
unanticipated changes in system goals, new users and 
uses, and technology advances.  For example, Liu and 
Martonosi [3] demonstrated in simulation how dynamic 
protocols can improve the routing performance and 
energy efficiency in sensor networks. 

At the same time, we need to maintain the loose 
coupling of services and clients in traditional service 
oriented architectures (SOA).  Potential protocols must 
not be required to be negotiated up front nor is it 
acceptable to require each service and client to 
implement a bank of protocol handlers for every 
potential partner with which they would like to 
communicate.   
 
3. Our Approach 

Our approach to allow dynamic protocols while 
maintaining loose coupling among clients and services 
is to allow services to inject their own proxy definitions 
into clients at runtime.  These proxy definitions can 
contain logic to implement a single, service-defined 
protocol, or negotiate with the service to choose from a 



range of protocols as appropriate.  The service can also 
inject updated and completely new proxies into the 
client over the life of their collaboration, thus allowing 
the protocol to change even after the initial negotiation. 

Client applications are developed against a service 
interface like traditional IDL-based DCS.  However the 
application is not linked with a static, auto-generated 
library that contains the proxy definition.  The details 
of how the client will communicate with the server are 
left empty; a library that is capable of downloading and 
installing executable code is provided instead.  At 
runtime, when the client application finds a specific 
service implementation that is needed, the client-side 
library downloads the proxy’s details from that service.  
The service is free to provide its “best”  available 
protocol handler to the client based on the current 
operating environment. 

This is similar to the approach taken in the Jini 
Network Technology architecture [4].  The main 
disadvantage of Jini is that is requires Java.  The proxy 
definitions shared from services to clients in Jini is 
compiled Java Virtual Machine (JVM) bytecode.  Our 
approach differs in that we intend to provide an XML-
based language to define the proxy.  By capturing the 
logic of how to communicate with the service in a 
language and (virtual) platform independent way, we 
can extend the range of clients we can support to any 
system that can parse and process XML.  The next 
section will detail our XML-based language. 
 
4. Application Logic Markup Language 

As a first step toward enabling dynamic proxies, we 
are proposing an XML-based language that can be used 
to describe application logic.  We call this language the 
Application Logic Markup Language (ALML).  
Services will define their proxies for clients in this 
language. 

ALML is actually an XML Schema Definition 
(XSD) that defines an object oriented language.  That 
language is heavily  influenced  by  Java’s  syntax  and 
terminology.  We currently have a proof-of-concept 
implementation of a library that processes ALML in 
Java.  The implementation is capable of importing an 
ALML-compliant XML specification and executing the 
logic contained therein within a JVM.  The concepts 
are translatable across other contemporary object 

oriented languages and we intend to provide mappings 
for multiple languages in the future. 

The ALML language defines standard object 
oriented constructs and attributes.  There are packages 
which are collections of classes.  Classes are 
collections of member variables (data) and member 
methods (operations).  Methods are collections of 
statements.  Like Java, ALML supports single 
inheritance and multiple interface implementations.  
ALML defines specific primitive types and sizes that 
are mapped to language-specific types.  Currently 
ALML does not support more complex constructs such 
as anonymous classes, inner-classes, or generics. 

Due to space constraints we are unable to present 
the entire language here.  Instead we will provide a few 
examples  to  show  the  “flavor”  of  the  language.  We 
have also left off some details to keep the example 
sizes small; we do not expect these modifications will 
impact the utility of the examples. 
 
4.1. C lass definition 

A class in ALML has the following attributes: a 
name, a package, a visibility declaration, a flag to 
determine if the class is final and a flag to determine if 
the class is transferrable.  The name and package are 
used to uniquely identify the class definition.  The 
visibility determines what other classes have access to 
this class (any class, only classes within the same 
package, etc).  The final flag is used to determine if the 
class can be extended by other classes or not.  The 
transferrable flag is used to determine if instantiated 
objects of this class type can be transferred across the 
network.  There is also a version specification on the 
“almlDeclaration”  element  that  wraps  the  class 
definition that is used to determine when a class 
definition has been modified. 

A class definition consists of a list of all of the 
interfaces it implements, its parent class (if any), and 
sets of constructors, member variables, and member 
methods, and optionally a single destructor and static 
initializer method. An excerpt of the ALML XSD for 
class definitions is shown in listing 1. 

 
 
 



 
Listing 1: ALML XSD Class Definition 

 
A partial definition of the class  “ExampleClass” 

defined in ALML XML is shown in listing 2. 

Listing 2: An example ALML class declaration 
 
4.2. Method definition 

A method in ALML has the following attributes: a 
name, visibility, and flags to determine if the method is 
final, abstract, or static.  The name is used to uniquely 
identify the method within the class definition.  The 
visibility defines what other methods can invoke this 
method (any method, only methods within this same 

class, etc).  The final flag is used to determine if the 
method can be overridden by subclasses or not.  The 
static flag determines if the method is associated with 
the class definition or individual instances of the class. 

A method consists of a signature and a statement 
block.  The signature for a method is the name and 
visibility, a flag if it is static (associated with the class), 
a flag if it is final (cannot be overridden), the return 
type, a list of parameters, a list of possible exceptions 
thrown.  An excerpt of the ALML XSD for method 
definitions is shown in listing 3. 

Listing 3: ALML XSD Method Definition 
 
A partial example of a method declaration in ALML 

XML is provided in listing 4.  The example defines a 
public method  called  “getValue”  that  returns  a  64-bit 
floating point number.  The method has a single 
Boolean  “flag”  parameter and does not throw any 
declared exception. 

 
Listing 4: An example ALML Method Definition 

 

<xs:complexType name="classDef"> 
    <xs:sequence> 
        <xs:element name="uses" type="usesDef"  
              minOccurs="0" maxOccurs="unbounded" /> 
        <xs:element name="extends" type="identifierDef"  
              minOccurs="0" maxOccurs="1" /> 
        <xs:element name="implements" type="identifierDef" 
              minOccurs="0" maxOccurs="unbounded" /> 
        <xs:element name="constructor"  
              type="constructorDef" minOccurs="0"  
              maxOccurs="unbounded" /> 
        <xs:element name="destructor" type="destructorDef" 
              minOccurs="0" maxOccurs="1" /> 
        <xs:element name="variable" type="variableDef"  
              minOccurs="0” maxOccurs="unbounded" /> 
        <xs:element name="method" type="methodDef" 
              minOccurs="0" maxOccurs="unbounded" /> 
        <xs:element name="abstractMethod"  
              type="abstractMethodDef" 
              minOccurs="0" maxOccurs="unbounded" /> 
        <xs:element name="staticInitializer" type="staticDef" 
              minOccurs="0" maxOccurs="1" /> 
    </xs:sequence> 
    <xs:attribute name="name" type="identifierDef"  
          use="required" /> 
    <xs:attribute name="package"  
          type="packageIdentifierDef" use="required" /> 
    <xs:attribute name="visibility" type="visibilityDef"  
          use="required" /> 
    <xs:attribute name="final" type="xs:boolean" /> 
    <xs:attribute name="transferrable" type="xs:boolean"  
          default="false" /> 
</xs:complexType> 

<?xml version="1.0"?> 
<almlDeclaration  
    xmlns="http://www.cse.buffalo.edu/alml" 
    … (other schemas) 
    version="1.0.0"> 
 
  <class name="ExampleClass"  
    package="example.pkg" 
    visibility="public" final="true"> 
    <uses name="ServiceInterface"  
        package="another.pkg" /> 
    <implements>ServiceInterface </implements> 
   … 

<method> 
    <signature name="getValue" visibility="public"> 
        <type> 
            <primitive>float64</primitive> 
        </type> 
        <parameter name="flag"> <type> 
                <primitive>boolean</primitive> 
            </type> </parameter> 
    </signature> 
    <block> 
        <statement>…. </statement> 
    </block> 
</method> 

<xs:complexType name="methodDef"> 
    <xs:sequence> 
        <xs:element name="signature" 
            type="methodSignatureDef" /> 
        <xs:element name="block" type="blockDef" /> 
    </xs:sequence> 
</xs:complexType> 
 
<xs:complexType name="methodSignatureDef"> 
    <xs:sequence> 
        <xs:element name="type" type="typeDef" /> 
        <xs:element name="parameter"  
            type="parameterDef" 
            minOccurs="0" maxOccurs="unbounded" /> 
        <xs:element name="throws" type="identifierDef"  
            minOccurs="0" maxOccurs="unbounded" /> 
        </xs:sequence> 
        <xs:attribute name="name" type="identifierDef"  
            use="required" /> 
        <xs:attribute name="visibility" type="visibilityDef"  
            use="required" /> 
        <xs:attribute name="static" type="xs:boolean" /> 
        <xs:attribute name="final" type="xs:boolean" /> 
</xs:complexType> 



4.3. Statement definition 
A statement in ALML is a choice between one of 

the many different statement types that ALML 
supports.  An excerpt of the ALML XSD for statement 
definitions is shown in listing 5. 

 

 
Listing 5: ALML XSD Statement Definition 

 
Expanding down one level from  “statementDef”, 

listing 6 shows the ALML XSD definition for  an  “if” 
statement.  An “if” statement in ALML is comprised of 
a test condition and its consequence, an optional list of 
additional test conditions and their associated 
consequences (i.e.,  the “else if” clause), and finally an 
optional consequence if all other test conditions have 
failed (i.e., the “else” clause). 

 
Listing 6: ALML XSD “If” Statement Definition 

 
5. Improving Performance through 

Dynamic Protocols 
As demonstrated in [3], this approach has the 

potential to provide a number of benefits to DCS and 
sensor-based networks.  Protocols can be tuned to 
minimize utilization of scarce resources at the 
desecration of each individual service rather than at a 
global level.  For example, a service implemented with 
a slow, unreliable connection might compress data 

prior to transmission to minimize the network traffic.  
Another service with a limited CPU might forego the 
compression to free the CPU to perform other tasks.  A 
client can connect to either service and will be unaware 
and uninterested if the proxy code it has downloaded 
and is executing locally is uncompressing the data 
stream or not. 

Another advantage of systems built on such an 
architecture involves the reduced service latency for 
clients.  The service could define the client-side proxy 
to cache the last service-provided value for some time 
window, e.g., based on the service’s update frequency.  
If  the  client  requests  the  “current”  value  within  that 
window, its proxy can immediately return the cached 
value since there will be no more current information 
available from the actual service.  Not only has 
network bandwidth and service CPU, memory, and 
battery been conserved, but the client will presumably 
receive its response significantly faster than requiring a 
round-trip to the service only to find out the client 
already has the most current information. 

We hypothesize that a distributed system 
architecture that supports sharing application logic will 
lead to systems that are more efficient, scalable, and 
adaptable than systems based on standardized network 
protocols. Distributed systems based on standardized 
network protocols by definition cannot modify network 
communications.  These systems utilize compile-time 
bound client-side proxies—the code that communicates 
with the server over the network on the client’s behalf.  
They are bound to the client at compile time since the 
proxy details are completely defined as part of the 
architecture’s  protocol  standardization.    Distributed 
systems that are capable of sharing application logic at 
runtime (mobile code) can exploit situational 
knowledge by deferring client-side proxy 
implementation details until runtime and changing them 
at any time.  The details can then be tuned to any 
specific criteria which is important to the specific 
system (e.g., minimize network utilization, reduce 
latency, improve scalability). 

 
5.1 Improving efficiency 
Efficiency can be measured in a number of different 

ways: network throughput, CPU utilization, memory 
footprint, power consumption, etc.  Every application 
will have its own criteria and thresholds for acceptable 
performance across scarce resources.  Every protocol 
and usage pattern will affect different performance 
measurements uniquely.  Selecting one generalized, 
standardized protocol will introduce a design bias and 
cannot possibly efficiently cover every situation.  A 
system which allows services to provide mobile code to 

<xs:complexType name="statementDef"> 
    <xs:choice> 
        <xs:element name="variable" type="variableDef" /> 
        <xs:element name="expression"  
            type="expressionDef" /> 
        <xs:element name="if" type="ifDef" /> 
        <xs:element name="for" type="forDef" /> 
        <xs:element name="while" type="whileDef" /> 
        <xs:element name="try" type="tryDef" /> 
        <xs:element name="return" type="expressionDef" /> 
        <xs:element name="throw" type="expressionDef" /> 
        <xs:element name="noop" type="empty" /> 
        <xs:element name="break" type="empty" /> 
        <xs:element name="assign" type="assignDef" /> 
    </xs:choice> 
</xs:complexType> 

<xs:complexType name="ifDef"> 
    <xs:sequence> 
        <xs:element name="condition"  
            type="expressionDef" /> 
        <xs:element name="then" type="blockDef" /> 
        <xs:element name="elseIf" type="elseIfDef"  
            minOccurs="0" maxOccurs="unbounded" /> 
        <xs:element name="else" type="blockDef"  
            minOccurs="0" maxOccurs="1" /> 
    </xs:sequence> 
</xs:complexType> 



define smart proxies at runtime enables the system to 
react and adjust to changing situations.  For example, 
proxies can be configured to batch specific requests 
instead of sending each request immediately without 
changing the service interface. 

A mobile code-based architecture does not 
automatically solve the efficiency problem but rather 
provides a framework in which system designers and 
software engineers are able to solve distribution issues 
in a domain-specific and application-aware way. 

There is extra cost associated with setting up a 
connection in a mobile code-based architecture, 
especially if that code is interpreted.  There are 
additional up-front costs with respect to the network as 
the proxy code is downloaded.  There are additional 
costs to CPU usage as the proxy code is compiled or 
interpreted on the first time it is used. There is also 
additional latency introduced in the initial call as the 
mobile definition is downloaded and interpreted.  
These costs, however, should be incurred only once 
and therefore are independent of n.  Furthermore, in 
special circumstances system clients could also be 
seeded with initial proxies to further reduce initial 
connection costs when required. 

 
5.2 Improving scalability 
Tuning application-level protocols based on system 

usage can reduce demands placed on specific resources 
and/or distribute the processing of a distributed system, 
allowing the same software and hardware to provide 
greater capacity. Even so, if that capacity is reached, 
mobile code-based smart proxies can continue to help 
by providing the ability to redirect entire services, 
individual methods, and even specific requests across 
multiple servers helping systems achieve scalability.  
These redirections can be based on past performance, 
current situations, or overall system goals—and all 
managed internally to the smart proxy on the client, but 
without tight client coupling.  In some instances, the 
smart proxies can contain the entire logic to perform 
algorithmic-based services, further distributing the 
execution of a service across client machines, but 
maintaining the algorithm implementation definition at 
the service.  If the algorithm needs to be updated in the 
future, the single service implementation is updated 
and the new algorithmic solution will be automatically 
pushed to all clients.  This maintains the service 
distribution while helping with system maintenance. 

 
5.3 Improving adaptability 
Mobile code-based architecture has the potential to 

enable smart proxies.  These smart proxies, in turn, 

enable a distributed system to adjust runtime, 
application-level protocols to changing system 
demands.  Section 5.2 describes how a mobile code-
based architecture can also aid in adaptability when a 
service method or set of methods have algorithmic 
solutions.   The algorithmic solution can be provided in 
the proxy, removing the need for any client-side 
communication back to the original service.  The 
service  is  in  effect  “teaching”  clients  how  to perform 
the service for themselves.  This is very adaptable as 
clients  can  learn  new  “skills”,  and  services  can 
automatically update clients with improved algorithmic 
solutions, code that can manage additional 
requirements or to handle emerging issues by changing 
the proxy implementation being provided. 

 
6. Related Work 
There has been work performed related to enabling 

dynamic protocols in DCS and sensor networks 
specifically. 

The Web Service Invocation Framework (WSIF) 
([5], [6]) defines a framework that abstracts protocol 
handling for clients.  In theory, this architecture could 
be used to integrate clients with services using dynamic 
protocols.  However, the definition of the protocol 
handlers is expected to be provided as a Java JAR file 
and the implementation is a Java Application 
Programming Interface (API).  Therefore the client (at 
least the part that interacts with the framework) will 
have to be implemented in Java even though the 
protocols that the client uses may be language 
independent.   

Mckee [7] and more recently Aberer, Hauswirth, 
and Salehi [8] provide different views on how XML 
can be used to define the semantics of individual 
service calls (i.e., describe what a service can do for a 
client).  The purpose is to enable a DCS that can 
autonomously orchestrate interactions with services 
and clients in various ways.  However the descriptions 
stop short of containing how the client should 
communicate with the provider to perform the service, 
thus suffering from the same drawbacks as general 
IDL-based DCS once the messaging chain is 
configured.  

A Web Service-based approach for sensor networks 
is presented by Priyantha et al [9].  Being an IDL-
based DCS, the approach can suffer from the same 
issues raised in our paper.  However they also provide 
evidence that XML processing is possible in resource-
limited devices.  Using their XML processing 
approach, coupled with other techniques such as just-
in-time compiling and smart versioning techniques like 
those in discussed by Liu and Martonosi [3], our 



approach could be extendable to resource-limited 
devices on  the network’s “edge” where efficiency and 
adaptability are generally a more critical issue than for 
machines with greater capability.  

 Gibbons, et al [10] present work in enabling large-
scale sensor networks which include the concept of 
uploading executable to sensors in the form of sensor 
data  filters  which  they  call  “senselets”.  Their 
architecture is focused on sensor-based data collection 
and efficient distributed querying.  Our goal is to 
provide a more generalized architecture that can be 
used for a wide range of distributed tasks. 

Possibly the most closely-related work to ours is the 
Impala system [3].  Impala is a network architecture 
that allows for software updates including the modules 
that implement network communications (i.e., the 
proxy).  However, Impala shares compiled logic which 
implies that there is some knowledge specifically about 
which clients will need to communicate with which 
services.  This knowledge would be needed so that the 
service-specific proxies could be compiled to the 
necessary client architectures.  Our approach differs by 
defining the proxy logic in a platform- and language- 
independent way so it can but uploaded to any 
(potentially unanticipated) client. 

Waldo [4] presents a compelling case for an 
architecture where each individual service provider 
defines  the  “best”  protocol  they  can  and,  at  runtime, 
provides any interested client the necessary code to 
communicate with that protocol.  However, the Jini 
architecture is defined specifically for the Java 
programming language.  While there are ways of 
integrating this architecture with other languages, it is 
our goal to provide an architecture that integrates 
directly with the native language and platform of the 
client, thus reducing the complexity and overhead 
involved in communicating within a heterogeneous 
DCS. 

XML-based programming languages have been 
proposed by others as well (e.g., [11], [12]) but they 
are targeted toward their own specific purposes and 
their own runtimes rather than being a general-purpose, 
portable application logic description language.  We 
are attempting to develop enough capability in ALML 
to support sophisticated proxy definitions but need to 
constrain the language to constructs that can be mapped 
and supported in multiple target programming 
languages.  When the concepts in ALML are more 
mature, we will revisit existing XML languages and 
other similar approaches to see what definitions and 
standards can be leveraged. 

As a primarily XML-driven process, we expect to 
be able to  “borrow”  a  number  of  concepts  and 

advances from the Web Services realm directly or 
without much customization.  For example, we expect 
to be able to easily use SSL for secure 
communications, a binary XML representation (e.g., 
[13], [14]) to reduce the overhead associated with 
XML transfer and parsing when necessary, and 
potentially use the Web Service Description Language 
(WSDL) [15] directly as our service interface 
description language. 
 
7. Future Work  

This is a work-in-progress.  To move ALML out of 
the  “toy  system”  realm  and  into  a  viable  architecture, 
we need to expand the capabilities of the ALML 
language.  We also must support ALML in multiple 
programming languages; we are targeting the .NET 
platform next.  To realize the full potential and vision 
of the ALML language we will determine how ALML 
can be incorporated into an SOA such as one of those 
referenced in this paper.  This work is currently 
underway in parallel with evolving the language. 

Security in this type of architecture will be critical.  
We expect to be able to adapt a number of security 
strategies from web service security models and 
existing mobile code architectures.  Secure socket layer 
communications, digitally signed exchanges, and fine-
grained control over access to critical system 
components  and  data  through  “sandboxing” 
downloaded code are a few of the concepts we will be 
pursuing. 

Communication between address spaces is generally 
orders of magnitude slower than local access.  Clearly 
adding another layer of abstraction on top of an already 
inherently slow process will not be without additional 
cost.  However, we feel that the long-term benefits of 
using this approach—including overall reduction in 
network, CPU, and battery utilization, and increases in 
service response times—will far outweigh the initial 
(and constant) cost of downloading and interpreting the 
XML-based definition of the proxy once.  Furthermore, 
techniques such as seeding the initial proxy definition 
on the initial clients prior to deployment, just-in-time 
compiling of ALML, and intelligent caching and 
versioning of previously loaded proxy definitions can 
further reduce the overhead associated with such an 
architecture.  We can also investigate other, more 
compact and processed representations of application 
logic such as using abstract syntax trees.  To what 
extent these techniques can reduce the architecture’s 
overhead is another evaluation to be performed.   



 
8. Summary 

In this paper, we have argued that a DCS 
architecture that supports dynamic protocols can 
operate more efficiently than an architecture based on 
standardized messaging.  We have provided a brief 
overview of an XML-based language called ALML 
that we feel will enable a DCS that supports multiple 
protocols in heterogeneous system.  By defining IDL-
based proxies in ALML, services can inject the 
protocol handling details into heterogeneous clients at 
runtime.  This will allow services to take advantage of 
application-specific knowledge and, based on system 
goals, constraints, and performance attributes, tune 
network protocols to achieve greater system 
performance. 
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