
Toward Dynamic Application Protocols in H eterogeneous Distr ibuted
Computing Systems

Dennis Patrone
Bina Ramamurthy

Department of Computer Science and Engineering
University at Buffalo

{dpatrone, bina} @ cse.buffalo.edu

Abstract

In order to achieve the full transformational

promise of Sea Power 21 and net-centric warfare, a
highly efficient and adaptable service oriented
architecture (SOA) is required. We propose an XML-
based language to enable heterogeneous distributed
systems to dynamically modify the application-layer
network protocol in an SOA at runtime and without
individual service-client agreements. We argue that an
SOA that supports dynamic protocols can operate
more efficiently and is more agile and spontaneous
than an architecture based on standardized messaging
such as Web Services. We provide an overview of the
XML-based language called the Application Logic
Markup Language (ALML) and our innovative
approach to an SOA that supports multiple protocols
in heterogeneous systems; ALML lays the foundation
for a truly dynamic, interoperable, and adaptable
SOA.

1. Introduction

From the remote procedure call (RPC) systems of
the mid-1970’s and 1980’s, through the Common
Object Request Broker Architecture (CORBA) in the
1990’s, to the concept of Web services today
(including SOAP-based, XML-RPC-based, and those
following REST principles), the main concept
underlying most heterogeneous distributed computing
systems (DCS) has remained largely unchanged for
three decades or more: they achieve inter-process
communication via standardized message passing [1].
The benefit is that clients and services can statically
link in libraries that produce and consume the
standardized messages and are able to communicate
with any other process that also produces and
consumes the messages. The messages are simply a

standardized application-layer protocol for exchanging
data and requests.

Any protocol will have biases introduced at design
time. Protocol designers must make decisions that will
affect attributes such as complexity (in both space and
time) and extensibility. Any large-scale, standardized
protocol must favor generality over efficiency. The
protocol will be designed for the average case and will
be unable to take advantage of (or compensate for)
application-specific knowledge about specialized
processing, component capabilities, expected usage
patterns, data priority, etc. This deficiency is
magnified in DCS such as sensor networks that operate
over unreliable and low bandwidth connections, with
limited hardware, and using battery power.

We propose an architecture that will allow DCS to
move away from static, standardized messaging and
toward dynamic application layer protocols. This
flexibility will allow systems to tune the application
layer protocols to their specific requirements and
constraints.

For the remainder of this paper, we will refer to the
application layer protocol simply as the “protocol”.
We will focus on improving the application layer
exchange. We assume lower-level protocols that
provide connectivity between two executing processes
over a communications link are pre-established.

Section 2 provides the motivation for our approach
that is explained in Section 3. The application logic
markup language (ALML) that supports the dynamic
logic sharing is explained in Section 4. Section 5
discusses the performance improvement possible with
our approach. Section 6 compares the related work,
followed by future directions in Section 7 and a
summary in Section 9.

2. Motivation
Auerbach and Russell [2] divided distributed

computing systems into two broad categories:
distributed programming languages and interface
definition language (IDL)-based programming. In both
cases, the system consists of a marshaling subsystem.
IDL-based systems translate the user-defined interface
into the marshalling subsystem. Distributed
programming languages often automate the marshalling
within the language or with a language extension. For
the purpose of this paper we will not concern ourselves
with distributed programming languages. In general,
distributed programming languages only interoperate
with other systems implemented in the same distributed
language; in this paper we are concerned with
heterogeneous systems.

While the protocols and implementations may vary
across IDL-based systems, high-level views of the
architectures look quite similar. In general, an
interface is defined for some capability or “service”.
From that interface server-side and client-side libraries
are created. Figure 1 shows the general flow of
information for a single request in an IDL-based DCS
system. The arrows are numbered in increasing order
in which information flows. The lighter gray area on
the left represents the client-side library while the
darker gray area on the right represents the server-side
library. The client-side library contains stubs that
implement the service interface by marshalling requests
to the server-side and unmarshaling the server-side
responses for the calling client code. In this paper, we
will refer to the client-side marshalling subsystem as
the “proxy” since it acts on behalf of the service within
the client’s address space. The server-side library
listens for client requests, unmarshals those requests,
invokes code provided by the service implementer to
actually handle the requests, and marshals the
responses back to the client. These libraries are
normally automatically generated by a tool that
processes the interface definition.

Figure 1: General IDL-based DCS request

Since the messages flowing between the separate

address spaces are standardized, heterogeneity is
achieved. It does not matter what hardware, operating
system, or language exists on either side. As long as
both sides adhere to the message specification they will
be able to communicate with each other. Each side
statically links to the appropriate library to manage the
exchange of messages.

This interoperability comes at a price. Since the
messages are standardized and based on the interface,
changing what flows between the address spaces
requires a change in the interface itself. This change
affects all previously developed service
implementations and client applications. Furthermore
the message passing standards must favor generality
over other considerations such as efficiency and
performance in their definitions.

Conversely, an architecture that enables dynamic
protocols will allow services and clients to determine
the best protocol at runtime based on the current
operating context. The in situ values of available
attributes can be considered and any controllable
aspect can be optimized. These factors may include the
participating components’ capabilities and limitations,
current network topology and load, the overall system’s
goals and constraints, task priorities, latency
thresholds, etc. By tuning protocols to remove
inefficiencies in the process, overall system
performance can be improved. Also, by allowing
updates to protocol after deployment of services and
clients, the DCS will be more capable of adapting to
unanticipated changes in system goals, new users and
uses, and technology advances. For example, Liu and
Martonosi [3] demonstrated in simulation how dynamic
protocols can improve the routing performance and
energy efficiency in sensor networks.

At the same time, we need to maintain the loose
coupling of services and clients in traditional service
oriented architectures (SOA). Potential protocols must
not be required to be negotiated up front nor is it
acceptable to require each service and client to
implement a bank of protocol handlers for every
potential partner with which they would like to
communicate.

3. Our Approach

Our approach to allow dynamic protocols while
maintaining loose coupling among clients and services
is to allow services to inject their own proxy definitions
into clients at runtime. These proxy definitions can
contain logic to implement a single, service-defined
protocol, or negotiate with the service to choose from a

range of protocols as appropriate. The service can also
inject updated and completely new proxies into the
client over the life of their collaboration, thus allowing
the protocol to change even after the initial negotiation.

Client applications are developed against a service
interface like traditional IDL-based DCS. However the
application is not linked with a static, auto-generated
library that contains the proxy definition. The details
of how the client will communicate with the server are
left empty; a library that is capable of downloading and
installing executable code is provided instead. At
runtime, when the client application finds a specific
service implementation that is needed, the client-side
library downloads the proxy’s details from that service.
The service is free to provide its “best” available
protocol handler to the client based on the current
operating environment.

This is similar to the approach taken in the Jini
Network Technology architecture [4]. The main
disadvantage of Jini is that is requires Java. The proxy
definitions shared from services to clients in Jini is
compiled Java Virtual Machine (JVM) bytecode. Our
approach differs in that we intend to provide an XML-
based language to define the proxy. By capturing the
logic of how to communicate with the service in a
language and (virtual) platform independent way, we
can extend the range of clients we can support to any
system that can parse and process XML. The next
section will detail our XML-based language.

4. Application Logic Markup Language

As a first step toward enabling dynamic proxies, we
are proposing an XML-based language that can be used
to describe application logic. We call this language the
Application Logic Markup Language (ALML).
Services will define their proxies for clients in this
language.

ALML is actually an XML Schema Definition
(XSD) that defines an object oriented language. That
language is heavily influenced by Java’s syntax and
terminology. We currently have a proof-of-concept
implementation of a library that processes ALML in
Java. The implementation is capable of importing an
ALML-compliant XML specification and executing the
logic contained therein within a JVM. The concepts
are translatable across other contemporary object

oriented languages and we intend to provide mappings
for multiple languages in the future.

The ALML language defines standard object
oriented constructs and attributes. There are packages
which are collections of classes. Classes are
collections of member variables (data) and member
methods (operations). Methods are collections of
statements. Like Java, ALML supports single
inheritance and multiple interface implementations.
ALML defines specific primitive types and sizes that
are mapped to language-specific types. Currently
ALML does not support more complex constructs such
as anonymous classes, inner-classes, or generics.

Due to space constraints we are unable to present
the entire language here. Instead we will provide a few
examples to show the “flavor” of the language. We
have also left off some details to keep the example
sizes small; we do not expect these modifications will
impact the utility of the examples.

4.1. C lass definition

A class in ALML has the following attributes: a
name, a package, a visibility declaration, a flag to
determine if the class is final and a flag to determine if
the class is transferrable. The name and package are
used to uniquely identify the class definition. The
visibility determines what other classes have access to
this class (any class, only classes within the same
package, etc). The final flag is used to determine if the
class can be extended by other classes or not. The
transferrable flag is used to determine if instantiated
objects of this class type can be transferred across the
network. There is also a version specification on the
“almlDeclaration” element that wraps the class
definition that is used to determine when a class
definition has been modified.

A class definition consists of a list of all of the
interfaces it implements, its parent class (if any), and
sets of constructors, member variables, and member
methods, and optionally a single destructor and static
initializer method. An excerpt of the ALML XSD for
class definitions is shown in listing 1.

Listing 1: ALML XSD Class Definition

A partial definition of the class “ExampleClass”

defined in ALML XML is shown in listing 2.

Listing 2: An example ALML class declaration

4.2. Method definition

A method in ALML has the following attributes: a
name, visibility, and flags to determine if the method is
final, abstract, or static. The name is used to uniquely
identify the method within the class definition. The
visibility defines what other methods can invoke this
method (any method, only methods within this same

class, etc). The final flag is used to determine if the
method can be overridden by subclasses or not. The
static flag determines if the method is associated with
the class definition or individual instances of the class.

A method consists of a signature and a statement
block. The signature for a method is the name and
visibility, a flag if it is static (associated with the class),
a flag if it is final (cannot be overridden), the return
type, a list of parameters, a list of possible exceptions
thrown. An excerpt of the ALML XSD for method
definitions is shown in listing 3.

Listing 3: ALML XSD Method Definition

A partial example of a method declaration in ALML

XML is provided in listing 4. The example defines a
public method called “getValue” that returns a 64-bit
floating point number. The method has a single
Boolean “flag” parameter and does not throw any
declared exception.

Listing 4: An example ALML Method Definition

<xs:complexType name="classDef">
 <xs:sequence>
 <xs:element name="uses" type="usesDef"
 minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="extends" type="identifierDef"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="implements" type="identifierDef"
 minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="constructor"
 type="constructorDef" minOccurs="0"
 maxOccurs="unbounded" />
 <xs:element name="destructor" type="destructorDef"
 minOccurs="0" maxOccurs="1" />
 <xs:element name="variable" type="variableDef"
 minOccurs="0” maxOccurs="unbounded" />
 <xs:element name="method" type="methodDef"
 minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="abstractMethod"
 type="abstractMethodDef"
 minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="staticInitializer" type="staticDef"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 <xs:attribute name="name" type="identifierDef"
 use="required" />
 <xs:attribute name="package"
 type="packageIdentifierDef" use="required" />
 <xs:attribute name="visibility" type="visibilityDef"
 use="required" />
 <xs:attribute name="final" type="xs:boolean" />
 <xs:attribute name="transferrable" type="xs:boolean"
 default="false" />
</xs:complexType>

<?xml version="1.0"?>
<almlDeclaration
 xmlns="http://www.cse.buffalo.edu/alml"
 … (other schemas)
 version="1.0.0">

 <class name="ExampleClass"
 package="example.pkg"
 visibility="public" final="true">
 <uses name="ServiceInterface"
 package="another.pkg" />
 <implements>ServiceInterface </implements>
 …

<method>
 <signature name="getValue" visibility="public">
 <type>
 <primitive>float64</primitive>
 </type>
 <parameter name="flag"> <type>
 <primitive>boolean</primitive>
 </type> </parameter>
 </signature>
 <block>
 <statement>…. </statement>
 </block>
</method>

<xs:complexType name="methodDef">
 <xs:sequence>
 <xs:element name="signature"
 type="methodSignatureDef" />
 <xs:element name="block" type="blockDef" />
 </xs:sequence>
</xs:complexType>

<xs:complexType name="methodSignatureDef">
 <xs:sequence>
 <xs:element name="type" type="typeDef" />
 <xs:element name="parameter"
 type="parameterDef"
 minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="throws" type="identifierDef"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="name" type="identifierDef"
 use="required" />
 <xs:attribute name="visibility" type="visibilityDef"
 use="required" />
 <xs:attribute name="static" type="xs:boolean" />
 <xs:attribute name="final" type="xs:boolean" />
</xs:complexType>

4.3. Statement definition
A statement in ALML is a choice between one of

the many different statement types that ALML
supports. An excerpt of the ALML XSD for statement
definitions is shown in listing 5.

Listing 5: ALML XSD Statement Definition

Expanding down one level from “statementDef”,

listing 6 shows the ALML XSD definition for an “if”
statement. An “if” statement in ALML is comprised of
a test condition and its consequence, an optional list of
additional test conditions and their associated
consequences (i.e., the “else if” clause), and finally an
optional consequence if all other test conditions have
failed (i.e., the “else” clause).

Listing 6: ALML XSD “If” Statement Definition

5. Improving Performance through

Dynamic Protocols
As demonstrated in [3], this approach has the

potential to provide a number of benefits to DCS and
sensor-based networks. Protocols can be tuned to
minimize utilization of scarce resources at the
desecration of each individual service rather than at a
global level. For example, a service implemented with
a slow, unreliable connection might compress data

prior to transmission to minimize the network traffic.
Another service with a limited CPU might forego the
compression to free the CPU to perform other tasks. A
client can connect to either service and will be unaware
and uninterested if the proxy code it has downloaded
and is executing locally is uncompressing the data
stream or not.

Another advantage of systems built on such an
architecture involves the reduced service latency for
clients. The service could define the client-side proxy
to cache the last service-provided value for some time
window, e.g., based on the service’s update frequency.
If the client requests the “current” value within that
window, its proxy can immediately return the cached
value since there will be no more current information
available from the actual service. Not only has
network bandwidth and service CPU, memory, and
battery been conserved, but the client will presumably
receive its response significantly faster than requiring a
round-trip to the service only to find out the client
already has the most current information.

We hypothesize that a distributed system
architecture that supports sharing application logic will
lead to systems that are more efficient, scalable, and
adaptable than systems based on standardized network
protocols. Distributed systems based on standardized
network protocols by definition cannot modify network
communications. These systems utilize compile-time
bound client-side proxies—the code that communicates
with the server over the network on the client’s behalf.
They are bound to the client at compile time since the
proxy details are completely defined as part of the
architecture’s protocol standardization. Distributed
systems that are capable of sharing application logic at
runtime (mobile code) can exploit situational
knowledge by deferring client-side proxy
implementation details until runtime and changing them
at any time. The details can then be tuned to any
specific criteria which is important to the specific
system (e.g., minimize network utilization, reduce
latency, improve scalability).

5.1 Improving efficiency
Efficiency can be measured in a number of different

ways: network throughput, CPU utilization, memory
footprint, power consumption, etc. Every application
will have its own criteria and thresholds for acceptable
performance across scarce resources. Every protocol
and usage pattern will affect different performance
measurements uniquely. Selecting one generalized,
standardized protocol will introduce a design bias and
cannot possibly efficiently cover every situation. A
system which allows services to provide mobile code to

<xs:complexType name="statementDef">
 <xs:choice>
 <xs:element name="variable" type="variableDef" />
 <xs:element name="expression"
 type="expressionDef" />
 <xs:element name="if" type="ifDef" />
 <xs:element name="for" type="forDef" />
 <xs:element name="while" type="whileDef" />
 <xs:element name="try" type="tryDef" />
 <xs:element name="return" type="expressionDef" />
 <xs:element name="throw" type="expressionDef" />
 <xs:element name="noop" type="empty" />
 <xs:element name="break" type="empty" />
 <xs:element name="assign" type="assignDef" />
 </xs:choice>
</xs:complexType>

<xs:complexType name="ifDef">
 <xs:sequence>
 <xs:element name="condition"
 type="expressionDef" />
 <xs:element name="then" type="blockDef" />
 <xs:element name="elseIf" type="elseIfDef"
 minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="else" type="blockDef"
 minOccurs="0" maxOccurs="1" />
 </xs:sequence>
</xs:complexType>

define smart proxies at runtime enables the system to
react and adjust to changing situations. For example,
proxies can be configured to batch specific requests
instead of sending each request immediately without
changing the service interface.

A mobile code-based architecture does not
automatically solve the efficiency problem but rather
provides a framework in which system designers and
software engineers are able to solve distribution issues
in a domain-specific and application-aware way.

There is extra cost associated with setting up a
connection in a mobile code-based architecture,
especially if that code is interpreted. There are
additional up-front costs with respect to the network as
the proxy code is downloaded. There are additional
costs to CPU usage as the proxy code is compiled or
interpreted on the first time it is used. There is also
additional latency introduced in the initial call as the
mobile definition is downloaded and interpreted.
These costs, however, should be incurred only once
and therefore are independent of n. Furthermore, in
special circumstances system clients could also be
seeded with initial proxies to further reduce initial
connection costs when required.

5.2 Improving scalability
Tuning application-level protocols based on system

usage can reduce demands placed on specific resources
and/or distribute the processing of a distributed system,
allowing the same software and hardware to provide
greater capacity. Even so, if that capacity is reached,
mobile code-based smart proxies can continue to help
by providing the ability to redirect entire services,
individual methods, and even specific requests across
multiple servers helping systems achieve scalability.
These redirections can be based on past performance,
current situations, or overall system goals—and all
managed internally to the smart proxy on the client, but
without tight client coupling. In some instances, the
smart proxies can contain the entire logic to perform
algorithmic-based services, further distributing the
execution of a service across client machines, but
maintaining the algorithm implementation definition at
the service. If the algorithm needs to be updated in the
future, the single service implementation is updated
and the new algorithmic solution will be automatically
pushed to all clients. This maintains the service
distribution while helping with system maintenance.

5.3 Improving adaptability
Mobile code-based architecture has the potential to

enable smart proxies. These smart proxies, in turn,

enable a distributed system to adjust runtime,
application-level protocols to changing system
demands. Section 5.2 describes how a mobile code-
based architecture can also aid in adaptability when a
service method or set of methods have algorithmic
solutions. The algorithmic solution can be provided in
the proxy, removing the need for any client-side
communication back to the original service. The
service is in effect “teaching” clients how to perform
the service for themselves. This is very adaptable as
clients can learn new “skills”, and services can
automatically update clients with improved algorithmic
solutions, code that can manage additional
requirements or to handle emerging issues by changing
the proxy implementation being provided.

6. Related Work
There has been work performed related to enabling

dynamic protocols in DCS and sensor networks
specifically.

The Web Service Invocation Framework (WSIF)
([5], [6]) defines a framework that abstracts protocol
handling for clients. In theory, this architecture could
be used to integrate clients with services using dynamic
protocols. However, the definition of the protocol
handlers is expected to be provided as a Java JAR file
and the implementation is a Java Application
Programming Interface (API). Therefore the client (at
least the part that interacts with the framework) will
have to be implemented in Java even though the
protocols that the client uses may be language
independent.

Mckee [7] and more recently Aberer, Hauswirth,
and Salehi [8] provide different views on how XML
can be used to define the semantics of individual
service calls (i.e., describe what a service can do for a
client). The purpose is to enable a DCS that can
autonomously orchestrate interactions with services
and clients in various ways. However the descriptions
stop short of containing how the client should
communicate with the provider to perform the service,
thus suffering from the same drawbacks as general
IDL-based DCS once the messaging chain is
configured.

A Web Service-based approach for sensor networks
is presented by Priyantha et al [9]. Being an IDL-
based DCS, the approach can suffer from the same
issues raised in our paper. However they also provide
evidence that XML processing is possible in resource-
limited devices. Using their XML processing
approach, coupled with other techniques such as just-
in-time compiling and smart versioning techniques like
those in discussed by Liu and Martonosi [3], our

approach could be extendable to resource-limited
devices on the network’s “edge” where efficiency and
adaptability are generally a more critical issue than for
machines with greater capability.

 Gibbons, et al [10] present work in enabling large-
scale sensor networks which include the concept of
uploading executable to sensors in the form of sensor
data filters which they call “senselets”. Their
architecture is focused on sensor-based data collection
and efficient distributed querying. Our goal is to
provide a more generalized architecture that can be
used for a wide range of distributed tasks.

Possibly the most closely-related work to ours is the
Impala system [3]. Impala is a network architecture
that allows for software updates including the modules
that implement network communications (i.e., the
proxy). However, Impala shares compiled logic which
implies that there is some knowledge specifically about
which clients will need to communicate with which
services. This knowledge would be needed so that the
service-specific proxies could be compiled to the
necessary client architectures. Our approach differs by
defining the proxy logic in a platform- and language-
independent way so it can but uploaded to any
(potentially unanticipated) client.

Waldo [4] presents a compelling case for an
architecture where each individual service provider
defines the “best” protocol they can and, at runtime,
provides any interested client the necessary code to
communicate with that protocol. However, the Jini
architecture is defined specifically for the Java
programming language. While there are ways of
integrating this architecture with other languages, it is
our goal to provide an architecture that integrates
directly with the native language and platform of the
client, thus reducing the complexity and overhead
involved in communicating within a heterogeneous
DCS.

XML-based programming languages have been
proposed by others as well (e.g., [11], [12]) but they
are targeted toward their own specific purposes and
their own runtimes rather than being a general-purpose,
portable application logic description language. We
are attempting to develop enough capability in ALML
to support sophisticated proxy definitions but need to
constrain the language to constructs that can be mapped
and supported in multiple target programming
languages. When the concepts in ALML are more
mature, we will revisit existing XML languages and
other similar approaches to see what definitions and
standards can be leveraged.

As a primarily XML-driven process, we expect to
be able to “borrow” a number of concepts and

advances from the Web Services realm directly or
without much customization. For example, we expect
to be able to easily use SSL for secure
communications, a binary XML representation (e.g.,
[13], [14]) to reduce the overhead associated with
XML transfer and parsing when necessary, and
potentially use the Web Service Description Language
(WSDL) [15] directly as our service interface
description language.

7. Future Work

This is a work-in-progress. To move ALML out of
the “toy system” realm and into a viable architecture,
we need to expand the capabilities of the ALML
language. We also must support ALML in multiple
programming languages; we are targeting the .NET
platform next. To realize the full potential and vision
of the ALML language we will determine how ALML
can be incorporated into an SOA such as one of those
referenced in this paper. This work is currently
underway in parallel with evolving the language.

Security in this type of architecture will be critical.
We expect to be able to adapt a number of security
strategies from web service security models and
existing mobile code architectures. Secure socket layer
communications, digitally signed exchanges, and fine-
grained control over access to critical system
components and data through “sandboxing”
downloaded code are a few of the concepts we will be
pursuing.

Communication between address spaces is generally
orders of magnitude slower than local access. Clearly
adding another layer of abstraction on top of an already
inherently slow process will not be without additional
cost. However, we feel that the long-term benefits of
using this approach—including overall reduction in
network, CPU, and battery utilization, and increases in
service response times—will far outweigh the initial
(and constant) cost of downloading and interpreting the
XML-based definition of the proxy once. Furthermore,
techniques such as seeding the initial proxy definition
on the initial clients prior to deployment, just-in-time
compiling of ALML, and intelligent caching and
versioning of previously loaded proxy definitions can
further reduce the overhead associated with such an
architecture. We can also investigate other, more
compact and processed representations of application
logic such as using abstract syntax trees. To what
extent these techniques can reduce the architecture’s
overhead is another evaluation to be performed.

8. Summary

In this paper, we have argued that a DCS
architecture that supports dynamic protocols can
operate more efficiently than an architecture based on
standardized messaging. We have provided a brief
overview of an XML-based language called ALML
that we feel will enable a DCS that supports multiple
protocols in heterogeneous system. By defining IDL-
based proxies in ALML, services can inject the
protocol handling details into heterogeneous clients at
runtime. This will allow services to take advantage of
application-specific knowledge and, based on system
goals, constraints, and performance attributes, tune
network protocols to achieve greater system
performance.

9. References
[1] Andrews, G. “Paradigms for process interaction in
distributed programs,” ACM Computing Surveys, Vol 23, No
1. March 1991.

[2] Auerbach, J., Chu-Carroll M. “The Mockingbird System:
A Compiler-based approach to maximally interoperable
distributed programming,” Research Report RC 20718, IBM
T. J. Watson Reasearch Center, February 1997.

[3] Liu, T., Martonosi, M. “Impala: A Middleware System
for Managing Autonomic, Parallel Sensor Systems,” ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, June 2003.

[4] Waldo, J. “The End of Protocols,” Available at
http://java.sun.com/developer/technicalArticles/jini/protocols
.html. Accessed on: November 16, 2008.

[5] Duftler, M., Mukhi, N., Slominski, A., Weerawarana, S.
“Web Services Invocation Framework (WSIF)”, OOPSLA
Workshop on Object Oriented Web Services, 2001.

[6] Mukhi, N., Khalaf, R., Fremantle, P. “Multi-protocol
Web Services for enterprises and the Grid,” In Proceedings
of the EuroWeb 2002 Conference on the Web. 2002.

[7] Mckee, P., Marshall, I. “Behavioural specification using
XML,” In Proceedings of the 7th IEEE workshop on Future
Trends of Distributed Computing Systems - FTDCS’99.
IEEE Computer Society Press, pp 53-59.

[8] Aberer, K., Hauswirth, M., Salehi, A. “A Middleware For
Fast And Flexible Sensor Network Deployment,” VLDB ‘06,
September 2006, Seoul, Korea, ACM, 2006, pp 1199-1202.

[9] Priyantha, B., Kansal, A., Goraczko, M., Zhao, F. “Tiny
Web Services: Design and Implementation on Interoperable
and Evolvable Sensor Networks,” ACM Conference on

Embedded Networked Sensor Systems (SenSys), November
2008.

[10] Gibbons, P., Karp, B., Ke, Y., Nath, S., Seshan, S.
“IrisNet: An Architecture for a Worldwide Sensor Web,”
Pervasive Computing, 2(4):22-33, 2003.

[11] Plusch, M. and Fry, C. Water: Simplified Web Services
and XML Programming. John Wiley & Sons, Inc. New York,
NY, 2003.

[12] Klang, M. “XML and the art of code maintenance”.
Extreme Markup Languages. Proceedings of, 2003.

[13] Sandoz, P., Triglia, A., Pericas-Geertsen, S. “Fast
Infoset”. Available at:
http://java.sun.com/developer/technicalArticles/xml/fastinfos
et/. Accessed on: November 16, 2008.

[14] Schneider, J., Kamiya, T. (ed). “Efficient XML
Interchange (EXI) Format 1.0.” W3C Working Draft 19
September 2008.

[15] Christensen, E., Curbera, F., Meredith, G.,
Weerawarana, S. “Web Services Description Language
(WSDL) 1.1.” W3C Note 15 March 2001.

