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Abstract - The change of focus in modern warfare from 
individual platforms to the network has caused a con-
comitant shift in supporting concepts and technologies. 
Greater emphasis is placed on interoperability and com-
poseability. New technologies such as SOA and semanti-
cally aware systems have come into the spotlight. This 
paper argues that just as the problem space demands 
interoperability of diverse technologies, so must the solu-
tion space. In other words, not only are new approaches 
needed, but they must also come together as a seamlessly 
interoperable technological tool set. This can be accom-
plished only via a consistent multi-disciplinary approach. 
In this paper, we present some of the major requirements 
of today’s Predictive Situation Awareness Systems 
(PSAW), propose our approach as a coordinated mix 
between state-of-the-art research efforts, and present the 
architecture for enabling our approach. 

Keywords: probabilistic reasoning, naval predictive situ-
ational awareness, web services, Bayesian networks, 
MEBN, PR-OWL, probabilistic ontologies, distributed 
hybrid inference, spatio-temporal hybrid analysis. 

1 Introduction 
Knowledge fusion aims to produce a dynamic, compre-
hensive, and accurate battlespace picture for the war-
fighter that integrates tactical data from multiple intelli-
gence sources. Until the recent past, battlespace informa-
tion systems have usually been self-contained solutions 
merging data from a finite array of sensors, sending their 
data via proprietary protocols, and following predefined 
schemas. As technology evolved at an ever-increasing 
pace, and as increasing bandwidth and connectivity made 
possible the exchange of enormous volumes of data, old-
style stovepipe systems became obsolete. The new con-
cept of NetCentric Operations changes the focus from 
individual platforms to the network. This change in focus 
has in turn caused a shift in supporting concepts and tech-
nologies. Greater emphasis is placed on requirements such 
as interoperability and composeability. New concepts and 

technologies such as SOA and semantically aware sys-
tems have come into the spotlight. 
 A recurring phenomenon during times of fundamen-
tal conceptual and technological change is the attempt to 
solve new problems with old tools. This is analogous to 
hanging onto old doctrinal frameworks in the face of new 
technologies. As a specific example, it is akin to employ-
ing stealth fighters with Vietnam-era tactics. Just as new 
weapons technologies demand changes in doctrine, ad-
vances in information processing capability require fun-
damentally new fusion technologies for delivering value 
to the warfighter. These new technologies must be devel-
oped with the new realities in mind, and must be tailored 
to exploit the new capabilities. When faced with today’s 
increasingly complex problem of distributed knowledge 
fusion, one has to realize that just as the problem space 
demands interoperation of diverse areas of knowledge, so 
must the solution space. In other words, not only are new 
approaches needed, but they must also act as a seamless 
technological whole. This can be accomplished only 
through a consistent, scientifically principled, multi-
disciplinary approach. 
 In section 2 we address the requirements for a pre-
dictive situation awareness (PSAW) system and the major 
issues that must be faced when attempting to meet the 
requirements. Our approach of combining a suite of tech-
nologies into an integrated technological tool set is intro-
duced in section 3. Finally, section 4 presents PROGNOS 
(PRobabilistic OntoloGies for Net-centric Operation 
Systems), a system that applies our multi-disciplinary 
approach to address the problem of predictive situational 
awareness within the maritime operations domain. 

2 PSAW System Requirements 
Information in the battlefield is derived through reports 
coming from diverse sources, each with its own distinct 
syntax, and each having different semantics. There are 
many kinds of uncertainty involved in this process, e.g., 
noise in sensors; incorrect, incomplete, or deceptive hu-



man intelligence; missing or incorrectly recorded data. 
Because of this, it is essential to have a coherent, consis-
tent, and principled means to represent different kinds of 
uncertainty, and to communicate uncertainty among the 
systems performing PSAW. Furthermore, lack of under-
standing of cause and effect mechanisms in the world as 
represented by the systems’ models is a major source of 
interoperability difficulties. Effective interoperability 
requires understanding the relationship between reports 
from different systems and the events reported upon. 
Thus, the representational framework has to be expressive 
enough to capture not only the uncertainty but also the 
subtle and intricate relationships among entities of differ-
ent types. 
 In addition, distributed PSAW involves dealing with 
large amounts of data of diverse types. This generates a 
requirement for automated integration of diverse data 
types (e.g., geolocation, feature, and identification) from 
multiple intelligence sources, in a consistent and timely 
manner. In a distributed environment, this demands not 
only better algorithms, but also the ability to represent and 
communicate semantic information, including information 
about uncertainty. 
 Finally, because modern PSAW systems must oper-
ate in a distributed environment, we assume a SOA archi-
tecture that enables interoperation through a series of 
information exchanges, usually dealing with data and/or 
software modules residing at different physical locations 
and controlled by different organizations, and producing 
real-world effects as a result of those interactions. 
 A brief analysis of the above high-level requirements 
led us to the conclusion that in order to fulfill its objec-
tives a distributed PSAW system must: 

a. Provide interoperable methodologies for propagating 
uncertainty through the integration process to charac-
terize and distinguish situational conditions for pre-
dictive analysis and impact assessment under various 
behaviors and environments. 

b. Have a rigorous mathematical foundation and effi-
cient algorithms to combine data from diverse sources 
for reliable predictive situation assessment. 

c. Include automated techniques to reduce users' infor-
mation processing load and provide timely actionable 
knowledge to decision makers. 

d. Operate in a distributed environment where data 
sources may be geographically dispersed, lack com-
mon syntax and semantics, have distinct owners and 
comply with diverse exchange policies. 

 The inherent complexity implied by each of the 
above items makes it clear that there is no and there will 
not be a silver bullet to address them. Also, applying ef-
fective techniques from distinct areas of knowledge with-
out a coordinated approach would have the potential to 

create a complex, “Hydra” system whose management 
would be nightmarish. Thus, in this paper we propose to 
develop a consistent multi-disciplinary approach, which 
main components we describe in the next section. 

3 A Multi-Disciplinary Approach 
We have already argued in this venue [1] that semanti-
cally aware systems are essential to distributed knowledge 
fusion, and that probabilistic ontologies can provide se-
mantic awareness while also establishing the framework 
for representing and reasoning with uncertainty in a prin-
cipled way. Thus, to address item “a” from the previous 
section our multi-disciplinary approach includes a prob-
abilistic ontology language, PR-OWL [2, 3]. PR-OWL’s 
basis in Bayesian first-order logic, MEBN [4, 5], ensures 
logical coherence. Our PSAW efforts include incorporat-
ing needed enhancements to the representation frame-
work, and applying the framework to develop PR-OWL 
ontologies representing key aspects of PSAW knowledge. 
 To address item “b”, the representational framework 
of MEBN/PR-OWL functions as a basis for the develop-
ment of mathematically rigorous and computationally 
efficient algorithms for Spatio-Temporal Hypothesis 
Management [6] and Efficient Hybrid Inference [7-9]. 
These efficient approximate inference methods are essen-
tial to the engineering success of our predictive situational 
awareness framework. 
 Items “c” and “d” demand not only the representa-
tional framework and efficient reasoning algorithms above 
cited, but also the development of computational tools to 
ensure usability and scalability of the overall solution as 
well as interoperability among its components. We are 
addressing both items through a series of additions and 
improvements to the Bayesian package UnBBayes-MEBN 
[10, 11], which will be used as the main platform for our 
technological suite. 

3.1 The Representational Framework 
Bayesian probability provides a mathematically sound 
representation language and formal calculus for rational 
degrees of belief, which gives different agents the free-
dom to have different beliefs about a given hypothesis. 
This provides a compelling framework for representing 
uncertain, incomplete knowledge that can come from 
diverse agents. Bayesian Networks (BNs) provide a means 
of parsimoniously expressing joint probability distribu-
tions over many interrelated hypotheses. A Bayesian net-
work consists of a directed acyclic graph (DAG) and a set 
of local distributions. Each node in the graph represents a 
random variable. A random variable denotes an attribute, 
feature, or set of hypotheses about which an agent may be 
uncertain. The graph represents direct qualitative depend-
ence relationships; the local distributions represent quanti-
tative information about the strength of those dependen-
cies. The graph and the local distributions together repre-
sent a joint probability distribution over the random vari-



ables denoted by the nodes of the graph. We have argued 
elsewhere (e.g. [12]) that most complex problems cannot 
be addressed by BNs due to their limited attribute-value 
representation. That is, each problem instance in a BN is 
limited to the same fixed number of attributes, with only 
the evidence values changing from problem instance to 
problem instance. MEBN overcomes this limitation by 
adding first-order expressive power. Anything that can be 
expressed in first-order logic (FOL) can be assigned a 
probability by MEBN logic. It represents the world as 
consisting of entities that have attributes and are related to 
other entities. Knowledge about the attributes of entities 
and their relationships to each other is represented as a 
collection of MEBN fragments (MFrags) organized into 
MEBN Theories (MTheories). An MFrag represents a 
conditional probability distribution for instances of its 
resident random variables given their parents in the frag-
ment graph and the context nodes. An MTheory is a set of 
MFrags that collectively satisfies consistency constraints 
ensuring the existence of a unique joint probability distri-
bution over instances of the random variables represented 
in each of the MFrags within the set.  MEBN semantics 
integrates the standard model-theoretic semantics of clas-
sical first-order logic with random variables as formalized 
in mathematical statistics. 
 MEBN’s FOL expressiveness is the logical basis for 
our PSAW systemic approach. An MFrag can be roughly 
compared to a BN template that can be instantiated as 
many times as needed to build a Situation-Specific Baye-
sian Network (SSBN) in response to a system’s query. In 
a generic system concept, knowledge about entities and 
their respective attributes is encoded as a set of MFrags. 
When a query is posed to the system (e.g. in a PSAW 
problem), a MEBN algorithm is run to build a SSBN for 
answering the query. The set of MFrags encoding the 
knowledge of a given domain is called an MTheory and is 
stored in PR-OWL format. 

 
Figure 1. PR-OWL Classes. 

 Among other useful features, MEBN logic provides 
the expressive power to represent and reason about hypo-
thetical entities. Uncertainty about whether a hypothesized 
entity actually exists is called existence uncertainty. Effi-
cient approximate inference about existence uncertainty, 
as provided by the Spatio-Temporal Hypothesis Manage-
ment algorithms, enables predictive situational awareness 

for situations in which the number of entities involved is 
unknown. This is an essential capability for PSAW. 
 PR-OWL [2] is an OWL upper ontology for repre-
senting MTheories. Its classes and properties allow the 
ontology engineer to specify MFrags while maintaining 
compatibility with the widespread, W3C recommended 
OWL ontology language. The main classes of PR-OWL 
are depicted in Figure 1, and a complete explanation of 
the format can be found in [2] or at http://www.pr-
owl.org. 
 As an ontology language, PR-OWL supports logical 
reasoning. Thus, PR-OWL ontologies can represent the 
knowledge needed for tasks such as inferring the class 
structure from the asserted properties. As pointed out in 
[13], this is in contrast with the Object Oriented (OO) 
modeling paradigm, in which instances are created as 
members of some class, and their behavior is specified by 
the class structure. As such, changing the class structure 
of an OO model would have a direct impact on the whole 
system’s behavior, whereas in an OWL or in a PR-OWL 
ontology the class structure is inferred from its asserted 
properties, which also dictate the class membership of its 
instances. While the OO paradigm works well in closed 
systems with centralized control of the data schema, the 
ontology engineering paradigm is more suitable to situa-
tions in which such control either does not exist or is 
difficult to enforce. Therefore, the inherent flexibility of 
PR-OWL’s data modeling paradigm is a perfect fit for a 
distributed PSAW system, in which information may 
come from many systems, possibly following distinct data 
schemas and semantics. 
  One limitation for using OWL in PSAW systems is 
its lack of support for principled uncertainty representa-
tion and, consequently, for plausible reasoning. As an 
example from the naval domain, suppose a USS Destroyer 
sends a query regarding ships within a 100 NM radius that 
might be involved in illicit activities. Using its own sys-
tem, with its own data structure and internal logic, intelli-
gence agency I2 reports back about a dhow whose owner 
is within the same social network as a person suspected of 
plotting a terrorist attack. Intelligence reports and sensor 
information are usually incomplete and plagued with 
uncertainty, and thus would not be sufficient for a logical 
reasoner to make any conclusions about whether the dhow 
is involved in an illicit operation. In our example, a prob-
abilistic reasoner can use the same information to provide 
an update on the chances of this dhow being involved or 
not in an illicit operation. In addition, it is reasonable to 
assume that additional inferences or data on this dhow and 
on other ships as well will also be arriving at the De-
stroyer’s system in response to the request, and will allow 
for an almost continuous update on the respective chances 
that each vessel within the stated radius is involved in 
illicit activity. In other words, expert knowledge stored in 
a probabilistic-capable ontology format allows for data 
coming from various sources to be almost continuously 
updated, resulting in automated support for comprehen-
sive situational awareness. Most tasks in a PSAW system 



require reusable patterns of knowledge about events in 
space and time. In an operational system, this type of 
reasoning would make use of available “legacy” determi-
nistic ontologies by the sources. PR-OWL allows the user 
of such an ontology to add probabilistic information to 
represent uncertain relationships.  

3.2 Achieving Sufficient Inferential Power 
The combination of probability with first-order logic 
within the MEBN/PR-OWL framework described above is 
part of the state-of-the-art research that has greatly ex-
panded the range of problems that can be tackled by auto-
mated fusion systems. However, for problems of the scale 
required for predictive analysis, exact evidential reasoning 
is generally intractable. Traditional fusion systems cope 
with complexity by decomposing the problem into hy-
pothesis management and inference. Hypothesis manage-
ment produces an approximate model that achieves tracta-
bility by combining similar hypotheses and/or pruning 
unlikely hypotheses and tracks. For the higher-level fusion 
problems considered here, the concept of a track must be 
generalized to a complex spatio-temporal entity that is 
related to and interacts in varied ways with other evolving 
spatio-temporal entities.  
 An expressive Bayesian logic such as MEBN permits 
the expression of sophisticated hypotheses about un-
bounded numbers of entities and their interrelationships. 
In a given situation, a situation-specific Bayesian network 
(SSBN) can be constructed from the generic MEBN do-
main model to reason about the actual entities involved. In 
general, there will be uncertainty about the number of 
entities in the situation, their relationships to each other, 
their past and future behavior, and the association of re-
ports to entities. Hypothesis management for MEBN do-
main models must be appropriately generalized to apply to 
complex interacting spatio-temporal entities [6]. Methods 
from the multi-target tracking literature can be generalized 
to search over the vast number of hypotheses [14]. In our 
approach, we employ a MCMC [15] hypothesis manage-
ment (MC2HM) module to nominate, refine, and prune 
hypotheses.  
 In an efficient distributed hybrid inference scenario, 
as reports about a situation arrive, the predictive situation 
awareness system begins an interleaved process of hy-
pothesis management and predictive inference. Conceptu-
ally, we can think of hypothesis management and model 
construction as producing a Bayesian network for reason-
ing about a given situation. In a network-centric architec-
ture, the inference task would be distributed among geo-
graphically dispersed and functionally distinct sub-
processes, each representing aspects of the problem rele-
vant to its own function. Our approach employs Multiply-
Sectioned Bayesian networks (MSBN) [16], a computa-
tional architecture for distributed inference in large Baye-
sian networks.  
 The prediction problem involves reasoning in space 
and time, and requires both discrete and continuous ran-

dom variables, which may not be Gaussian. This poses a 
computational challenge, because traditional Bayesian 
network inference algorithms are limited to discrete ran-
dom variables or to linear Gaussian continuous random 
variables. We apply the HMP-BN algorithm [7-8], and 
efficient approximate inference method based on distrib-
uted message passing in hybrid discrete and continuous 
Bayesian networks. HMP-BN uses the unscented trans-
formation [9] to approximate arbitrary continuous trans-
formations of arbitrary continuous distributions. The un-
scented transformation has been shown to be more accu-
rate than traditional linearization methods.  
 
3.3 Improving UnBBayes-MEBN 
In order to realize the approach we have described in the 
sections above, we teamed up with the developers at the 
University of Brasilia and started a series of improve-
ments to the MEBN reasoner they have developed with 
our support, UnBBayes-MEBN [10, 11]. In this section, 
we comment on the most recent work on the platform to 
make it suitable for using within a PSAW system based on 
our approach. 
 The most far-reaching modification we are currently 
implementing to UnBBayes-MEBN is to make it a full 
ontology editor. At this point, the package can be seen as 
a MEBN tool that can perform reasoning (i.e. build a 
SSBN over an MTheory upon the receipt of a query and 
then apply a BN algorithm to it) and save the model in 
PR-OWL format. This is a powerful capability, but it does 
not provide the ability to build a complete ontology with 
properties, classes, and restrictions other than those in-
cluded in the MTheory. The desired end state is to have a 
tool capable of not only representing and reasoning with 
uncertainty, but to also provide an interface and support to 
build both the deterministic and probabilistic aspects of a 
probabilistic ontology. As we have stated earlier, merging 
the ability to provide support for both types of knowledge 
representation and reasoning in a single environment is no 
minor achievement, and one that is the current subject of 
many research efforts. Our vision of how to achieve this 
end state is set forth in [2], and the basic concept is illus-
trated in Figure 2.  
 The figure depicts a plugin for the OWL Protégé 
editor (available from http://protege.stanford.edu/), being 
used to construct an MFrag using a GUI similar to a stan-
dard BN editor. The idea of such a plugin is to hide from 
users the complex constructs required to convey the many 
details of a probabilistic ontology, such as the reified 
relationships, composite random variable term construc-
tions (with or without quantifiers and Exemplar con-
stants), and others. In the figure, an MFrag was selected 
from the combo box in the top of the viewing area, thus 
information about its nodes is displayed in a graphical 
format that allows the user to build more nodes, edit or 
view the existing ones. When a node is chosen, such as 
the node ZoneEShips(z) in the picture, it appears high-
lighted (a red box around it) and all its data is shown in 



the lower square. Our current implementation in 
UnBBayes-MEBN has a slightly different layout with a 
new format for the icons (which denote the node’s type), 
but the general idea is the same.  

 

Figure 2. Snapshot of a graphical PR-OWL plugin. 

 Another important modification to the current 
UnBBayes-MEBN is support for continuous random vari-
ables. PSAW systems operate within an environment in 
which data from interacting spatio-temporal entities is 
represented in the form of continuous variables (such as 
spatial coordinates, time periods, or continuous attributes 
such as mass or length). Uncertainty about these quantities 
must be represented using continuous distributions. Thus, 
having the ability to perform Bayesian reasoning with 
continuous variables is an essential feature any successful 
PSAW system must provide. This problem has been al-
ready addressed in our group (e.g. [7]) and is now being 
implemented in UnBBayes-MEBN for application to prob-
lems in PSAW. 
 In addition to the spatio-temporal issues, most re-
ports received by a PSAW system have incomplete meta-
data, which means they include lack of perfect knowledge 
on the entity a given report is related to (i.e. association 
uncertainty), the kind of entity being reported about (i.e. 
type uncertainty), and even the very existence of the entity 
being reported (i.e. existence uncertainty). Inference about 
even a relatively simple situation can become intractable 
in the presence of these or other complex types of uncer-
tainty. These are familiar issues to the data fusion commu-
nity. Addressing them in the context of PSAW constitutes 
a major aspect of our research (cf. [5]). 
 A final aspect of our work on improving UnBBayes-
MEBN is related to the quality of the merging process. 
More specifically, when data that is reliable and accurate 
is combined with inaccurate or biased data (especially if 
the uncertainties or variances of the data are unknown 
[19]), the result could be worse than what would be ob-
tained by tasking the most appropriate sensor in a sensor 
suite, thus defeating the purpose of data fusion per se. To 
address that, we are developing a new evaluation module 
in UnBBayes that allows a user to evaluate the classifica-

tion performance of a multi-sensor fusion system modeled 
by a Bayesian network [20]. More specifically, the system 
is designed to answer questions related to probability of 
correct classification of a given target or situation using a 
specific individual sensor resource or a set of resources. It 
can also evaluate the marginal performance gain and 
cost/benefit ratio of individual sensor resource.  
 This evaluation module is based on the Fusion Per-
formance Model (FPM) [21]. The focus is in on classifica-
tion performance as described in [22]. This module is very 
valuable for a decision maker to analyze trade-off between 
performance and costs and to select proper sensor suites 
according to requirements and constraints. 
 The enhancements being made to UnBBayes-MEBN 
support the development of PROGNOS, a proof of con-
cept PSAW system presented as a use case in the next 
section.  

4 Use Case: PROGNOS 
PROGNOS is a naval PSAW system devised to work 
within the context of U.S. Navy’s FORCENet. It integrates 
the elements of our approach in a distributed system archi-
tecture. As stated in section 3, domain knowledge is repre-
sented as MFrags, which are instantiated and combined to 
construct a complex situation model. As streaming evi-
dence arrives, the system matches evidence to existing 
hypotheses and/or nominates new hypotheses via 
MC2HM, generating an approximation to the posterior 
distribution of hypotheses given evidence.  
 In the conceptual view of Figure 3, the hypothesis 
management process passes results to the inference proc-
ess, which builds a Bayesian network to predict future 
events.   

 

Figure 3. Predictive Situation Assessment and Impact 
Assessment System Architecture. 

 Figure 4 shows a broader concept for employing a 
MEBN/PR-OWL-based system in a distributed net-centric 
SOA. The bar represents the loosely coupled relationship 
between service consumers and providers. PROGNOS 
architecture uses probabilistic ontologies to fill a key gap 
in semantic matching technology [23], facilitating wide-



spread usage of Web Services for efficient resource shar-
ing in uncertain open and distributed environments. 

 

Figure 4. Distributed Predictive Situation Assessment and 
Impact Assessment. 

 The conceptual view of Figures 3 and 4 will be im-
plemented according to the architecture depicted in Figure 
5, which shows the major components of the PROGNOS 
system. According to this architecture, each FORCEnet 
platform (e.g., a ship) would have its own system that 
receives information from the platform’s sensors and from 
its FORCEnet peers. It is assumed that these inputs pro-
vide a fairly precise tactical view in which the geographi-
cal position of the entities surrounding the platform is 
known and well discriminated. The platform is also a peer 
in FORCEnet and exchanges data and knowledge as serv-
ices with its peers 
 The high level architecture depicted in the diagram 
was devised to provide a scalable, easily maintainable 
system with five independent modules. We now present 
each module at a greater level of detail.  

 

Figure 5. Distributed Predictive Situation Assessment and 
Impact Assessment – Component Architecture. 

4.1 The Reasoning Module 
The reasoning module is the heart of the PROGNOS sys-
tem, responsible for performing all of its reasoning serv-
ices. It is composed of a MEBN reasoner that interacts 

with the other modules and coordinates the execution of 
SSBN construction, which includes interleaved hypothesis 
management and inference within the constructed SSBN. 
In response to a query, the MEBN Reasoner relies on the 
system’s Knowledge Management Module to define the 
information necessary to answer the query. Then, it starts 
the SSBN construction process that will include succes-
sive accesses to the Knowledge Storage Module to re-
trieve all available information pertinent to the process 
and to support a continuous cycle of hypothesis formation, 
evaluation, and pruning that will run until it succeeds in 
creating the SSBN required to answer that query given the 
information at hand. During this process, external sources 
of knowledge may be queried via the Knowledge Ex-
change Module, which provides an advanced interface 
between the system and the external world. Finally, for 
training, evaluation, or other specific purposes, this inter-
action may be simulated via the Simulation Module. 

4.2 The Knowledge Storage Module 
A MEBN-based system needs to have a means of keeping 
track of the entities it is reasoning about. In PROGNOS, 
this task is performed by the Knowledge Storage Module, 
which has the Entity KB as its major component. There, 
every track and its respective data are stored within a 
schema based on and dynamically linked to the 
PROGNOS system’s MPO (Main Probabilistic Ontology).  

4.3 The Knowledge Management Module 
If the reasoning module is the heart that runs and coordi-
nates the system’s algorithms, then the Knowledge Man-
agement Module can be seen as the brains of the system, 
which is responsible for understanding the situation at 
hand and defining how to proceed in face of a situation. 
The module contains a set of probabilistic ontologies that 
capture domain knowledge in the form of MFrags, There 
are two distinct libraries, one comprised of POs represent-
ing task-dependent knowledge and the other containing 
two specific POs with knowledge that applies to any task. 
The latter is called Task-Neutral PO Library, and includes 
the Main Probabilistic Ontology (MPO), which captures 
concepts that are routinely used by the system (e.g. prop-
erties of entities, naval terms and possible meanings, rela-
tionships between those, etc). The second PO of the Task-
Neutral PO Library, the Hypothesis Management PO 
(HMPO), is focused on MFrags capturing the knowledge 
used in the Hypothesis Management process. It is kept 
separate from the MPO to facilitate maintenance and 
scalability. The other set of POs is the Task-Specific PO 
Library, which contains probabilistic ontologies pertaining 
to particular types of mission or domain about which 
PROGNOS needs to reason. In other words, it is a library 
of POs that are used in support of specific mission types, 
and can thus be upgraded or modified to reflect changes in 
the specific task-related concepts without requiring 
changes in the MPO, HMPO, or other system resources.  



4.4 The Simulation Module 
This module consists of the Scenario Simulator, which 
generates tracks in order to simulate the situations de-
picted in the case studies supporting the analysis. Basi-
cally, it sends geographical data (coordinates, known or 
probable) and status (friend, foe, unknown, etc.) of ficti-
tious entities that used to evaluate the system’s response. 
In the deployed PROGNOS system, this module would be 
connected to the system via the Knowledge Exchange 
Module and can be reconfigured to support system main-
tenance and simulation drills. 

4.5  The Knowledge Exchange Module 
PROGNOS continuously exchanges knowledge with the 
platform’s sensors and tactical C2 system, the Simulation 
Module, FORCEnet peers, and other networked systems. 
This module, whose main component is the Interchange 
PO Library, manages all those connections. Internal ex-
changes between the Reasoning Module and the plat-
form’s sensors and tactical C2 system, or the Simulation 
Module are performed via a direct link using a common 
protocol.  External exchanges, in the majority of the cases, 
will be performed between PROGNOS and peers using a 
common SOA standard throughout FORCEnet. However, 
there will be cases in which the system might need to 
exchange knowledge with non-FORCEnet peers that do 
not conform to SOA standards. For those situations, 
PROGNOS relies on a set of interchange POs to support 
interoperability. As an example, if exchanging informa-
tion with a JC3IEDM compliant system, PROGNOS 
would base its messages on a JC3IEDM PO, while inter-
change with other systems might either require a specifi-
cally built PO or may be managed by a general inter-
change PO. In any case, all should be part of the Inter-
change PO Library.  

5 Hypothesis Management 
Hypothesis management is one of the most complex re-
search challenges posed to the PROGNOS team, and we 
have been developing a new approach for the problem of 
both managing existing hypotheses and creating new ones 
as the situation evolves. During this initial period, we 
have developed a preliminary design for the HM engine, 
which is depicted in figure 6. 

 
Figure 7 – Hypothesis management engine pre-

liminary concept 

 HM produces an approximate model that achieves 
tractability by combining similar hypotheses and/or prun-
ing unlikely hypotheses and tracks. In the diagram above, 
incoming data or new queries trigger a new cycle of the 
hypothesis management process. Both are assessed with 
respect to relevance and impact to existing hypothesis, 
either creating a new hypothesis or extending an existing 
one. 
 In other words, new data or queries are analyzed in 
conjunction with the knowledge management POs (i.e. 
existing knowledge within the system), and can not only 
refine the knowledge on existing hypothesis but also trig-
ger the hypothesis discovery engine to create new ones. 

6 Conclusions 
This paper addresses a complex problem with require-
ments spanning diverse areas of knowledge. Although the 
approach presented here is still in the research stage and 
thus is a work in progress, the ideas behind its implemen-
tation have the potential to provide insights to researchers 
and practitioners in the field of predictive situation aware-
ness.  
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