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Abstract - Predictive behavior modeling poses several 
difficult challenges. Human behavior modeling using 
rational choice theory, negotiation protocols, and other 
socio-economic models have been somewhat 
successful in prediction of events on a city-wide or 
state-wide level (or a combination of levels) although 
tactical level simulations often do not consider this 
level of complex human interplay. Often seemingly 
small or insignificant tactical level events have lead to 
socio-political situations that shape the course of wars, 
influence political and policy changes, create areas of 
hostile incubation, and affect economic and social 
climates. We propose an immersive tactical level 
simulation framework that provides a novel method of 
modeling social complexity in which virtual agents 
perceive events and share their interpretations of 
events. The framework uses an open source technology 
design with an emphasis on generating extensible agent 
interaction models and realistic representations of 
agent’s actions, gestures, communications, and 
responses in a virtual training environment. The 
organizational dynamics generated by the modeling 
approach produce a highly variable set of possible 
outcomes to the training scenario. Combined with 
specific learning objectives, this high degree of 
variability within a learning environment poses new 
challenges to the trainee, namely the need to be aware 
of how to operate in highly dynamic environments. We 
propose a model for simulating aspects of social 
complexity using an agent-based immersive training 
system and describe how these techniques can be 
applied to the development of cross-cultural 
competence, situational awareness, crowd behavior 
analysis, and the formulation of options to influence 
individual and collective behaviors . 

 
INTRODUCTION  

 
The U.S Department of Defense's (DoD) has shifted its 
strategy in recent years to focus on the hybrid threats 
and opportunities that will continue to challenge the 
current and future joint force.  These challenges are 
characterized by uncertainty, complexity, rapid change, 
and persistent conflict. These complex operating 

environments require a Whole of Government (WOG), 
if not a Whole of Population (WOP), approach to 
succeed in the foreseeable future. On the ground, in 
intricate terrain where civilian and other populations 
mix, interactions will be complex, unpredictable, and 
even counterintuitive. First responders, deployed 
American Soldiers, and a myriad of other groups will 
be operating amid civilian populations, continuously 
encountering an unfamiliar culture and complex social 
situations that demand rapid perception, analysis, and 
decision-making.  Greater transparency, connectivity, 
and speed and quality of communications will play a 
more significant role in shaping perceptions of diverse 
populations involved in failed or failing states, 
conflicts or disasters.  In such turbulent environments, 
success or failure will depend on the ability of 
individual leaders, small units, or distributed groups of 
small units to accurately interpret the environment, 
intent, translate meaning from verbal and non-verbal 
aspects of individual and crowd behavior, and 
effectively manage their own activities to achieve 
desired security and stability outcomes. Enhancing 
competency in these areas requires significant 
emphasis on cultural and language studies through 
continuous training that builds personal and small unit 
collective experience in decentralized decision-making.  
The importance of the human factors associated with 
less than stable environments, conflicts and other 
complex circumstances such as natural disasters 
prompts a need for human-centric tools to respond to 
the populations involved. The U.S. Department of 
Defense, the U.S. Department of Homeland Security, 
law enforcement, first responders, and other agencies 
have identified "population tools" among their priority 
strategies for boosting small unit capacities to 
effectively handle current and future tactical 
challenges. A realistic training system must force the 
trainee to be aware of critical information, sensitivities, 
perceptions, and decision-making techniques which 
will lead to both mission success and long term 
strategic balance. Additionally, a realistic immersive 
training system must accurately map the critical 
knowledge contained within a community such as 
environmental and cultural cues, human interaction 



(communication through language and gestures), and 
highly engaging and stress-inducing (affective) 
scenarios.  Ultimately, results of the training will not 
only test how well the training objective is met, but 
also what type of influence the trainee's decisions had 
on the society.  The degree to which the collective 
behavior of the responding group contributes to 
achieving a sustainable stable environment may very 
well be the prime metric for smart adaptive learning 
systems.  
 
Enhancing competency in these areas requires 
significant emphasis on cultural and language studies 
and small group level situational awareness for 
collective, decentralized decision making. A training 
approach that provides accurate and realistic tactical 
level fidelity while applying complexity modeling 
holds great promise for satisfying much of the 
cognitive, cross-cultural training need at the tactical 
level. 
 
Game or virtual environment (VE) systems are well 
suited as tools for achieving competency in tactical 
level leadership and decision making training 
objectives due to several features available in such 
systems: 
  
1) Realistic perceptual cues (visual, auditory, haptic) 
and environments: The user is aware of critical 
information, sensitivities, perceptions, 
communications, and reasoning for decisions that are 
otherwise not represented in other presentation media. 
Social cues (e.g.: methods of communication, 
iteraction, protocol) can also be displayed through the 
design of virtual agents (avatars). Agents can speak, 
use gestures, and exhibit most human behaviors 
(Greenwald, 2002).  
2) Affective state modeling: Realistic emotion-inducing 

events can be generated to provide a more realistic 
training experience. Inducing emotional state change 
can aid in understanding how well the trainee works 
under pressure and can also help the trainee learn to 
operate effectively in arousing conditions (Reilly, 
2001).  
3) Collaborative scenarios: Tactical level scenarios 
can benefit from more than one participant working in 
collaboration within the scenario. Collaboration in 
virtual environments has been shown to be important in 
the overall sense-making process in the virtual world 
where participants can share knowledge and piece 
together events. This virtual world sense-making can 
translate to better sense-making in the real world 
(D’Eredita, 2007).   
4) Realistic human interaction using virtual agents: 
Virtual humans can display diversity in their 
perceptions, interactions, individual cognitive and 
affective responses, belief systems, transmission and 
acceptance of knowledge, and communication. These 
individual variables allow virtual communities to 
mimic the variability of behavior found in real-world 
communities (Helmert, 2007). 

 
Immersive training tools, although valuable for 
familiarization and task training, are often not designed 
to create social complexity and simulate group 
dynamics. Semi-automated forces systems such as the 
open source OneSAF system can handle combat 
systems from the level of individual troops, up to 
brigade, although not much has been done to integrate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Cognitive Agent Model 
 
social modeling at the immersive level. Soar 
Technology proposed a general purpose model of 
human cultural behavior based on the Cultural 
Cognitive Architecture (Taylor, Quist, Furtwangler, & 
Knudsen, 2007) designed to capture and express both 
psychological and cultural constraints, although 
elaborate socially evolving behaviors have not been 
incorporated. 
 
The focus of our efforts is to generate realistic cultural 
and social complexity within immersive tactical 
training environments within the context of an 
environment where the impact of tactical behaviors 
remains aligned or adapts to strategic intent and desired 
outcomes. The virtual tactical level training simulators 
will be populated with virtual humans (agents) whose 
design emphasizes realistic human behaviors, learning, 
and complex interactions. These agents will witness 
events and communicate information, beliefs, feelings, 
and overall situational awareness with other agents and 
immersed participants. As information spreads within 
the social structure, opinions, emotions, and 
expressions change the dynamics of the environment 
and ultimately influence the outcome of the training 
scenario. The outcome of training in these socially 
complex environments, specifically with the 
incorporation of realism (culture, physical states, 
emotion induced scenarios, collaboration) found in 
tactical VEs, provides a high-fidelity social realism not 
available in today’s non-dynamic training exercises.  
 
Methodology 
 



In our approach, we develop immersive tactical level 
training environments with a new type of virtual agent 
that perceives events, interprets these events, and 
communicates with other agents and the immersed 
trainee on what the virtual agent believes has happened. 
Communicating agents can share information and piece 
together events, or learn new information from other 
witnessing agents. Agents can also create inaccurate 
information in order to hide, or hinder the spread of 
information. These features force the trainees to make 
better decisions on how to interact within complex 
social environments and adapt to complex social 
dynamics. The human trainee directly influences the 
agent’s perception of the subject by the choices and 
actions that are made in the synthetic space. These 
experiences can be passed through the social network 
through agent-to-agent communication via language 
and/or gestures. The integrity of the knowledge passed 
is prone to both internal bias (belief, perceptual 
knowledge) and external bias (intentional and 
unintentional misinformation). These socially evolving 
agents have the ability to simulate language processing 
(speech acts, verbal cues), perception (listening or 
localizing for audio and visual awareness of 
surroundings), physical representation (culturally 
specific gestures, facial expressions), and actions 
(culturally specific responses). 
 
The Socially Evolving Agent  
 
Our approach begins with the development of the 
virtual agent, an agent whose primary function is to 
witness and share his experiences within the simulated 
environment. The agent possesses the following 
attributes: 1) an input (perception) state, which 
analyzes incoming data from the environment either 
through a sensory mode (e.g.: visual or auditory) or 
through communication with other agents; 2) internal 
(personality characteristics, memories, goals) and 
external influencing factors (societal pressures and 
constraints) that shape the acceptance of knowledge; 3) 
a memory model that encodes and stores discrete pieces 
of knowledge; 4) a filtering mechanism that allows the 
agent to interpret knowledge either through internal 
beliefs, previous knowledge, or collaborative 
agreement; and 5) a means to communicate knowledge 
in a natural manner (verbal communication, gestures) 
(Cummings & Leonard, 2008). 
 
Experience Model 
 
An agent’s means of encapsulating understanding of 
events within the simulation occurs in a model called 
the experience. The experience is defined as a 
relationship between specific occurrences and the 
meanings associated with those events. The experience 
is derived as E = (0 - i)∑ Ii (Ei | Ai) where E is the 
receiving agents’ interpretation of his experience plus 
the combined interpretations Ei of other agents’ 
experience Ai. The belief about the experience is 
derived from several sources, although we model the 

interpretation as coming from two primary sources: the 
receiving agent’s personal experience and the 
influencing statements from other agents. Figure 2 
illustrates the experience as concentric circles where 
information at its center is discrete and non-
interpretive. As the circles extend outward, data 
become more abstract and open to interpretation and 
meaning. Each of the concentric circles is explained 
below as they relate to the building of the experience. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The Experience 
 
 
Discrete Knowledge Layer 
 
Events which occur in the synthetic environment (e.g.: 
weapon fire, conversations) begin as a piece of discrete 
knowledge. Discrete knowledge is stored as an array of 
variables defined as K = (Ii, Ai, Ri, C, D) where I is the 
instigator of the event, Action A, Receiver R, the 
Communicator C and the Responder D Integrity i, or 
the level of awareness of this piece of knowledge, is a 
normalized value describing the degree of certainty 
about the critical value it modifies. Using an example 
of weapon fire, critical knowledge within an event is 
stored as K = <Agent X(i1=.3) fireWeapon(i2=.74) at 
AgentY(i3=.9)>. Note the low AgentX integrity (i1 = 
.3), the culprit may have been hidden from sight.  
lopment efforts. 
 
 
Interpreting Event Integrity 
 
A virtual agent’s knowledge is contingent upon how 
much data is available to it, and sometimes agents must 
piece together or predict absent information in order to 
accurately assess an event. Our inquiry lead to the 
investigation of Bayesian networks as a predictive tool 
for the agent. Bayesian networks allow one to calculate 
the conditional probabilities of the nodes (likelihood of 
possible interpretations) in the network given that the 
values of some of the nodes have been observed. It 
provides us a natural way to model probabilistic 
relationships among a set of variables of interests. 
Because of its probabilistic nature, a Bayesian belief 
network is very useful for encoding uncertain 
knowledge. Once the network has been defined, we can 
make inferences from it, no matter if it is diagnostic 
(from effects to causes), causal (from causes to 
effects), or mixed. We can then make decisions or 
recommendations based on the results of our inference. 



Bayesian causal inference modeling will be used to 
describe presumptions made by the agent when 
information is missing. In other words, we will use the 
causal probability model to help the agent fill in 
missing pieces for his missing information. Conditional 
probability, written as P (A|B, C), tells us the 
probability of the event A given the events B and C. A 
joint probability such as P (A, B) indicates the 
probability of both event A and B. The product rule of 
probability states a joint probability can be separated 
into the product of a prior probability and a conditional 
probability. Bayes' rule expresses this as 
 

Likelihood * prior  
Posterior= ____________________  

Marginal likelihood 
 
 

P(R=r | e) =   P(e | R=r)  
P(R=r) or, in symbols,       _____________________  

P(e) 
 
where P(R=r|e) is the probability that random variable 
R has value r given evidence e. The denominator is a 
normalizing constant that makes certain the 
denominator adds up to 1; it can be computed by 
adding up the numerator over all possible values of R. 
Bayesian inference calculates a numerical estimate of 
the degree of belief in the hypothesis after evidence has 
been observed. Inference usually relies on degrees of 
belief, or subjective probabilities, in the induction 
process and does not claim to provide an objective 
conclusion. Nonetheless, some Bayesian statisticians 
believe probabilities can have an objective value and 
therefore Bayesian inference can provide an objective 
method of induction. 
 
 
Event Layer 
 
The event expresses discrete knowledge from the 
perspective of an agent where E = SPT; S is the event’s 
perceived severity, T is its occurrence over time and P 
is the perceptual area of recognition. The perceptual 
area contains input from three perceptual modalities, 
visual, haptic, and auditory senses each with a given 
level of relevance and area of influence. For example, a 
gunshot may contain a very small visual perceptual 
area in order to be witnessed but due to the loudness of 
the gunshot, it will contain a large audio sphere of 
influence. 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 3: Perceptual Area 

 
 
 
Belief Layer 
 
The belief layer describes the level of acceptance of an 
event, and is designated as the layer that is shared with 
other agents. In other words, the agent is essentially 
describing what he believes has happened. The belief is 
calculated using several forms of input and is the most 
subjective of the layers. A belief can be determined 
based on a personal interpretation which may be 
influenced by internal states such as past memories and 
cultural predisposition. Figure 1 illustrates several 
internal and external influences that shape belief. 
Beliefs can also be determined based on external 
influences such as communication with other agents 
and consensus (agreements) with groups of agents. 
Decisions as to how a virtual agent will accept data as 
valid are based on models of agreement between 
participants. The agreement is a personal expression of 
acceptance attached to a particular belief as the basis 
for how information is both stored as a memory and 
transmitted to other virtual agents. 
 
 
Belief Derived from Agreement 
 
Agents that have experienced some event form a belief 
or acceptance about that event and may come to accept 
the experience as valid with the agreement of other 
agents. Although the agent may have a personal 
interpretation of some experience, sharing and 
acknowledgement of other interpretations creates both 
solidification and variation of belief. Agreement occurs 
when one or more agents communicate about an event 
and share their interpretations of what has happened. 
The agreement model A(n) = ( α, µ, ν, τ ) is a function 
of memory recall of the event α, previous consensus of 
the event µ, influencing values ν (e.g.: social status, 
culture, memory), and first-hand knowledge or 
perception of the event τ. Believability in the proposed 
model is presented as dynamic social impact theory, 
which predicts that, as strength and nearness increase 
within a group, so will conformity. Latane and 
L’Herrou (1996) discuss the importance of the group 
and the conformance of individuals to the group's 
normative pressures. We use a social impact model that 
incorporates Wetzel and Insko’s (1982) convergence 
research (agents are attracted to their ideal agents), and 
Latane homophily models (agents are attracted to like-
minded agents) to determine likely candidates for 
communication. It is often likely that more than one 
agent will have an interpretation of some experience. 
For example, where several agents may communicate 
their interpretation of events, the agent uses the 
equation described above to determine acceptance of a 
belief. Ultimately, sharing between agents does not 
imply the either agent will express a true representation 



of what has happened. One of our areas of exploration, 
Knowledge Mutation is an attempt to mimic this 
variability. In our use, we separate mutation into two 
facets; Unintentional Misperception—data that is not 
fully available to the agent, and Intentional 
Misperception—information that is available to the 
agent but is intentionally modified with the intention of 
spreading misinformation. Intentional 
misrepresentation can be used as a strategy (by agent or 
subject) to shift or transmute knowledge as necessary 
(Cummings & Leonard, 2008). Knowledge mutation in 
our model occurs at the critical data level where, 
returning to our previous example, <Agent X(i1=.3) 
fireWeapon(i2=.74) at AgentY(i3=.9)> where the 
instigator, action, or receiver of the event may be 
removed ( I am not sure who was firing at Agent Y ) or 
modified ( I think Agent Z was firing at Agent Y ). 
Communication 
 
Agents are designed to impart their experiences in 
several ways including speech acts, gestures, and 
emotional (physical) responses that can become inputs 
for the receiving agent. Language transmissions are 
passed directly between agent communicators and are 
intended to 1) mimic natural responses between agents 
(or agent and trainee), and 2) express the 
communicated experience in a natural syntactical way. 
The developed language model and schema definition 
uses informing statements to convey information 
between agents and the immersed trainee. This type of 
encoding mechanism allows information to be encoded 
(visual and audio responses) and decoded (perception 
and knowledge representations) in order to represent 
realistic virtual agent responses and provide insertion 
points for researchers to extend attributes of the agent. 
The agent’s knowledge is encoded as a communication 
message and passed to the receiving agent as a set of 
script tags. The schema contains a set of definitions for 
standard types of speech acts: greeting, informing, 
questioning, requesting, and labeling. In a positive non-
verbal engagement, actions such as waving, hand-
holding, or walking together may occur, where in a 
negative non-verbal exchange, the actions may be 
taunting, rock-throwing, or weapon firing. The 
language syntax describes both verbal (text and audio) 
and non-verbal (gestures, shared knowledge) 
exchanges. 
 
 
Knowledge Notational Tags 
 
Notational tags within the language system specify 
knowledge that will be retrieved from either the sender 
or receiver and passed as data between the conversers. 
In our model, data is polled directly from the language 
syntax (e.g.: AgentSender <Knowledge of Event>) and 
can be used to piece together compound thoughts 
(complex sentences) into more complete meanings for 
the agent. (e.g.: I may have seen <Agent Y> talk to 
<Agent X> outside his faction and <I am very 
concerned>). Gestures, facial cues, and other physical 

responses represent a source of knowledge for the 
receiving agent. Agent physical reactions and states are 
perceived by other agents as usual, unusual, suspicious, 
or very suspicious. Recognition of agent physical cues 
is described as Ac = (P | F, D, t) where an agent will 
perceive any of these traits P given the response is 
within the physical space (field of view) F, within a 
specified distance D, and constrained by a time 
parameter t (e.g.: every 500 ms). 
Agent Responses: Encoding Emotional States 
 
Agents may express emotion (as speech acts, actions, 
or gestures) as a way of conveying information when 
communicating with other agents and training 
participants. The internal influence describes the 
agent’s predisposition toward a response, modeled as 
cognitive states and social or cultural predispositions. 
The cognitive state is a personality representation 
where traits are assigned a normalized value describing 
overall aspects of behavior and a mutable factor that 
determines how likely the trait will be expressed. 
Emotion is also inherent in the design of the agent and 
is expressed in both internal representation 
(algorithmic states) and external (physical 
characteristics, gestures, actions in the virtual world). 
 
 
Experience and Emotion 
 
The Experience contains a set of emotional states tied 
to physical representations such as facial expressions, 
gestures, and actions. Emotional states are defined as 
any combination of base states (e.g. hostility, fear, 
anger, gregariousness, peacefulness) which can be 
combined to form complex aggregated states. These 
abstract states are expressed using fuzzy state sets, a 
common technique for expressing imprecise concepts 
and attributes. We apply a fuzzy rule set for describing 
transitions between the abstract states where base states 
contain degrees of membership within abstract states. 
For example, the abstract state frustrated contains three 
sets (not, somewhat, and very frustrated), and a degree 
of membership within each of these sets. Several 
abstract states may be aggregated with the notion of 
describing complex emotional states and behaviors. 
For example, within the context of inquisitiveness there 
are several additional traits that would help describe 
the emotional state such as clandestinely inquisitive or 
fearfully inquisitive. 

 
Encoding Physical States 
 
Fuzzy states are associated with physical state 
representations in the 3D virtual avatar where the 
physical representation is a procedural representation 
of the agent’s state. We developed a tool for blending 
base physical states (eyes moving, angry, sad, vertical 
and horizontal head movement) and emotional states 



into a set of procedural dynamic character motions. For 
example the fuzzy state “nervous” (represented as 
somewhat, rather, and very) can be added to other 

abstract states (e.g. distant, playful), gestures (thumbs 
up, wave, etc), and/or actions (walk, talk). Figure 4



demonstrates the procedural character tool that maps 
encoded emotional states to physical representations. 
Actions and gestures, and other physical states can be 
generated procedurally or through a process that allows 
the user to modify character reactions in real-time. The 
image below shows an avatar that is smiling and giving 
a “thumbs-up” gesture. Note in the Iraqi culture, this 
gesture may translate as an Iraqi insult, although other 
cues such as facial expression would help explain the 
motive behind this gesture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Procedural Character Tool 
 
Loosely Bound Physical States 
 
An abstract state may also contain what we describe as 
a loosely bound physical state, where a fully defined 
animation state would only appear to make sense in the 
context of the simulation. For example if we take the 
concept of inquisitive, a mildly inquisitive person may 
pick his head up, look around, and then continue in his 
current actions. On the other hand a very inquisitive 
individual may look intently at a target and point 
towards it. The loosely coupled state applies itself 
during the running of the simulation and blends with 
other procedural states. 

Immersive Scenario Design 

The next stage of our effort was to apply the agent 
model to an immersive (man-in-the-loop) 3D training 
framework where the user can interact and 
communicate with virtual agents, experience realistic 
environments and stressors, and engage in physical and 
cognitive training tasks. The immersive training 
framework designed for this system is based on an 
open source technology system (Ogre3D) that runs 
with a middleware framework developed to generate 
real-time 3D scenes and manipulate objects trivially in 
the scene viewer. A scenario was designed to combine 
specific mission objectives, cultural competency 
training, and an implementation of our social 

complexity model as a means to describe how 
decisions affect the social group. 

Trainees were asked to locate a pre-selected character 
by convincing agents to point him out or lead the 
trainee to him. No knowledge of faction or family 
relationship was known and no visual information was 
provided to identify the culprit by face. One agent was 
designated as a family member (a sister of the agent in 
question) and was a likely best candidate for finding 
the missing agent. In general agents were more likely 
to divulge information when 1) not related to that 
agent, 2) emotionally predisposed to divulge 
information, and 3) culturally disposed to divulge 
information (e.g. woman speaking only to her husband, 
Sunni speaking to another Sunni). The agents were 
encoded with awareness of Arabic insensitivities and 
misinterpretations based on US Marine cultural 
sensitivity training. Agents were assigned a value that 
described how the cultural insensitivity influenced their 
overall disposition, where several additional factors 
weighed in to the response including relationship, 
faction, social standing, and overall emotional 
predisposition. In sum, the participant was tasked to 1) 
find the agent in question, 2) do so with cultural 
sensitivity in mind, and 3) consider the broader effects 
of how decisions and actions would influence finding 
this agent. 

A three dimensional city model (Figure 5) based on 
Baquba, Iraq was designed with buildings, cars, market 
stalls, road blocks, and 50 virtual 3D agents of varying 
gender, emotion state, faction (Sunni or Shiaah), 
relationships (e.g.: brothers, friends, etc), physical 
traits, goals (e.g.: shopping, meeting with a friend), and 
awareness of cultural sensitivities. Agents were 
assigned similar communication syntaxes and were 
given time to gather information both perceptually 
about the environment and through communication 
with other agents. The syntax was limited to questions 
such as How are you feeling?, What are your 
concerns?, Do you see anyone suspicious?, How do 
you feel about the factional issues here? Did you talk to 
anyone? And what did he ask you?, and Where are you 
going? Agent conversations were given priorities based 
on the severity of situational events. For example, if a 
weapon was fired, conversations turned towards this 
likely topic of discussion. 

Cultural competency knowledge was incorporated into 
the training system as computer based instruction 

 
  



 
 
 
 
where the participant was exposed to and tested in this 
competency before entering the VE. Once the trainee 
became familiar with the cultural awareness 
documents, he was provided a description of the 
mission objective and then was granted access to the 
immersive 3D environment. The participant could 
move freely throughout the virtual world, including 
entering buildings, driving one of several military and 
non-military vehicles, and interacting with physical 
objects (e.g.: carts, tents, and market stalls). The 
participant was allowed to greet, speak about the agent 
in question, use coercion tactics, and arrest any agent). 
A list of questions such as Do you know <Man in 
Question>?, How do you know him? (Are you 
related?), Who else knows him? ,Can you show me 
where he is? could be asked by the participant. 

 
 
 
negotiation parameters, all help to shape the experience 
for the agents. 
 
As agents continue to interact and share experiences, 
knowledge continues to change, and agents must 
continuously reevaluate what they believe has 
happened. Where conflicting information between one 
or more agents must be agreed upon a Complex 
Agreement must form to make sense of the experience. 
The Complex Agreement (Figure 6) is an exchange in 
which two agents discuss an event with minimal 
overlap in perception. When there is little shared 
knowledge between agents about an event, we find that 
many competing factors influence the decision as to 
what may have happened. For example, partial 
perception, crowd consensus, ability to enroll others’ 
past non-related experiences (memory), and random 
variation play a role in determining what has happened; 
these exchanges (complex agreements) are where we 
see a high degree of variation between what has 
happened and what is perceived. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: 3D Virtual Environment 
 
Observations 
 
The act of finding the agents in question (the primary 
task) gave context for observing how a simple set of 
actions can evolve the balance and order of the agent 
population. Repeatedly agents of dissimilar factions by 
design tended not to participate often in sharing 
knowledge outside of their respective groups, and if 
knowledge was shared it was often mutated. 
 
A case where the training participant speaks to the wife 
of the agent in question while she is with her son 
creates a myriad of interpretations within the VE. 
Others question the cultural correctness of such an 
action (speaking to the woman in rather than her son), 
where still others see this conversation as an inter-
factional problem (speaking with a U.S. soldier). 
Several operating parameters including individual 
social welfare, interaction with similar agents, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Complex Agreement 
 
Conclusion 
 
Often we are asked to piece together bits of knowledge 
to make sense of some event, and very often we rely on 
the apparent good sense of the population (consensus) 
to help us come to some conclusion about an event or 
set of circumstances. We may look to some critical 
level of agreement between like-minded individuals 
that create consensus, and to what extent validity of 
data (proof), cultural disposition, genetics, and other 
factors play in determining the consensus. 
 
Ultimately, as information flows through the social 
network, what is believed to have happened may be



quite different than what has actually occurred. Rather, 
belief can be highly variable. Our goal was not 
necessarily to fully understand the outcomes of 
complex interactions, but rather to lay the foundation 
for how researchers and experts in cognition, culture, 
social sciences, and human terrain mapping could 
better design scenarios which moved beyond one 
dimensional human complexity modeling, specifically 
in virtual training environments. As discussed, the 
nature of immersive training environments lends itself 
to generating rich, emotion-inducing, and perceptually 
realistic situations that force the trainee (and instructor) 
to examine alternate criteria when determining mission 
success. Namely, training success can be measured in 
more realistic ways such as 1) how well did I achieve 
my first order objective? (e.g.: finding the potential 
terrorist), and 2) how did the means I used to achieve 
this objective affect the social group at large? 
 
Certainly scripted scenarios may allow us to simulate 
aspects of these multi-dimensional training scenarios, 
although this would imply the system designer would 
have clear notions of the impact on decisions made by 
the training participant. In fact, it is often the case that 
hard-to-predict, and rare events beyond the realm of 
normal expectations (“black swan effects”) are the 
outcome. We hope to use this approach as a method to 
better understand how what is seen as unlikely may be 
more likely than we believe. 
 
It was also our intent to examine the transmission of 
information between individuals within societies. The 
proposed system derives some of the concepts of 
knowledge integrity, mutation, and replication from 
evolutionary biologist Richard Dawkins (1989) 
Memetics model, used to describe a unit of human 
cultural transmission. He himself did not provide a 
thorough explanation of how the replication of units of 
information in the brain controls human behavior and 
ultimately culture. In our model we used the concept of 
the experience to describe this memetic unit, and apply 
several techniques that shape this quanta including 
perception, agreement, sharing with other agents, and 
probability techniques that estimate likelihood of 
acceptance. Within the experience several sub-areas 
(perception, communication, emotion, belief, event, 
and discrete knowledge) can be tailored to the design of 
the subject expert and instructional designer.   
 
The convergence of cultural, economic, political and 
military issues characterizes the complexity of current 
and near future operating environments.  
Counterinsurgency (COIN) Operations, for example, 
will no doubt continue to pre-occupy military planners 
and commanders for many years.  Unfortunately, the 
successful achievement of COIN goals alone cannot 
lead to success in implementing a holistic strategy for 
conducting the security and nation-building work 
required to achieve successful stability outcomes. In the 
design of complex operations, COIN operations must 

be integrated into other operations via one strategy 
focused on achieving a common set of security and 
stability goals.  Current smart training environments 
tend to focus on small units and the individuals that 
comprise those small units.  The next logical 
development step for the training and M&S community 
would be to extend the design of these systems to 
include the needs of the planning community.  The 
Army's recent identification of "design" into its 
operational planning doctrine emphasizes that 
"problem understanding" is a precursor to "problem 
solving" in its Military Decision Making Process 
(MDMP). The significance of design as a problem-
framing methodology is that it will provide cognitive 
aids to pick through the complexity and gain an 
understanding of the problem.  Individuals and small 
planning teams will be the first likely candidates for 
smart training systems that assist with building 
capacity for cultural understanding as well as 
understanding the key military, political and economic 
subsystem components of complex operating 
environments.  Security Cooperation and Homeland 
Defense planning are yet other areas that would benefit 
from training systems focused on aiding cognition and 
converging understanding across distributed, culturally 
diverse small teams of planners and decision-makers. 
These smart training systems would need to be able to 
measure the degree to which individuals, small teams, 
and networks of small teams achieve understanding of 
the problem and the speed of their convergence of 
understanding in order to effectively deliver training 
and increase performance.  These areas should all be 
considered for future research and development.  
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