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Abstract—Network aware applications provide opportunities
for adaptive resource allocations for both network resources
and distributed hosting of critical applications. We propose an
Automatic Dynamic Resource Management (AutoDRM) archi-
tecture for efficiently managing shared resources in tactical
network environments without human operator intervention. The
AutoDRM architecture was developed to resolve the resource
contention issues and to improve the quality of service in tactical
network environments. The information herein describes key
components of the AutoDRM architecture. An experimental end-
to-end network prototype test bed consisting of simulated satellite
communications (SATCOM) and an OPNET system-in-the-loop
(SITL) scenario was also developed to host the AutoDRM system.
Experimental test results demonstrate that network performance
such as packet delay and packet loss are greatly improved when
AutoDRM is deployed.

Index Terms—Network Performance, OPNET, Quality of Ser-
vice, Resource Management, Tactical Network.

I. INTRODUCTION

Providing End-To-End (ETE) Quality of Service (QoS)
in the Department of Defense’s (DoD) Global Information
Grid (GIG) network is vital for supporting communication
activities in tactical missions [1] [2]. An initial step towards
such an ETE QoS support in the large-scaled network is
to ensure that computing resources in each edge network
domain are managed efficiently and in accordance with the
GIG architectural framework [3] [4] [5]. Future computing
requirements for diverse tactical missions rapidly increase the
complexity of the heterogeneous tactical edge networks such
as the existing Total Ship Computing Environments (TSCE)
[6], Consolidated Afloat Networks and Enterprise Services
(CANES) [7], and Command, Control, Communications, Com-
puters, Intelligence, Surveillance and Reconnaissance systems
(C4ISR) [8], and Force XXI Battle Command Brigade and
Below (FBCB2) system [9]. Fig. 1 illustrates an operational
view of tactical edge networks1. These tactical systems consist
of many computing and networking devices highly integrated
within a common network infrastructure in order to alleviate
the number of tasks previously performed by human opera-

1GIG-N Networks refer to Tier 3 GIG networks (e.g. Defense Information
Systems Network (DISN), Warfighter Information Network-Tactical (WIN-
T)..etc.). GIG-N Edge Networks refer to user networks that connect through
Tier 3 networks to the GIG black core [4].

Fig. 1. Operational View of Tactical Edge Networks

tors. Services are provided to variety of user devices across
heterogeneous networks and access configurations.

New applications are enabled to perform a negotiation with
host and network services to meet desired QoS objectives.
These new applications are referred to as ”network aware”
applications and are highly integrated with a common net-
work infrastructure [10]. The systems often provide real-time
services such as Voice-over-IP (VoIP), streaming video, real-
time messaging and other time-sensitive tactical applications
that require stringent QoS guarantees with limited computing
and networking resources. Each time-constrained application
demands resources at different levels in order to achieve
various QoS requirements. Without an adequate resource man-
agement solution, simultaneous increases in all QoS levels can
result in resource contention which impacts the overall system
performance. An automated method to dynamically allocate
resources based on prioritization across multi-dimensions (e.g.
traffic classes, user precedence..etc.) and multi-choices (e.g.
QoS policies) is needed to address such a technical challenge.
The development of AutoDRM architecture leverages the
performance monitoring capability of a network management
system (NMS) and policy-based QoS capability in the network
domain. AutoDRM does not replace the overall network man-
agement system for the network domain. It merely serves as a
supplemental function to the NMS by providing the capability



Fig. 2. End-To-End Network Prototype Test Bed

for efficiently utilizing the resources within the context of a
tactical edge network domain.

A significant amount of research in dynamic resource
management has been studied in various contexts. Rajkumar
et al. [11] [12] developed a QoS-based resource allocation
model (Q-RAM), which establishes an analytical approach
to distribute system resources among multiple applications
while maximizing the utility function. Harada et al. [13] and
Stankovic et al. [14] proposed adaptive resource allocation
methods based on feedback control theories. In the context
of shipboard computing environments, Lardieri et al. [8]
developed a multi-layered resource management framework
in enterprise distributed real-time and embedded (DRE) sys-
tems. They primarily focused on managing the dynamics of
computing resources in response to mission mode changes
and/or resource load changes. Dasarathy et al. [15] developed
a CORBA-based multi-layer management framework to man-
age changes in network resources, work load, and mission
requirements at the network layer. Their study described the
interactions of four key network QoS components: bandwidth
broker, flow provisioner, network performance monitor, and
network fault monitor.

In this experimental study, we do not explore specific
approaches to QoS policies but for completeness in the dis-
cussion recognize that there are many potential approaches
such as load balancing, content based routing, or dynamic
selection among multiple paths. These approaches move the
route selection functionality to the application or transport
layer, through the use of overlay networks of cooperating
end systems. Such strategies enable consideration for end-to-
end performance management and supports use of informed
transport protocols and approaches that can appropriately use
the AutoDRM QoS architecture concept.

Constraint based routing, for example comprises both pol-
icy and QoS routing. QoS routing includes considerations
for application requirements as well as the availability of
network resources. However, this implies additional needs
for managing routing such as dissemination of dynamic in-
formation and more complex computations for route path
determination. Moen [16] has proposed the idea of using

TABLE I
DEFINITION OF THE PARAMETERS [11] [12] [17]

Name Notation
Service (or Application) {S1,S2,S3,..,Sn}
Shared Resources {r1,r2,r3,..,rm}
Maximum Resources {R1,R2,R3,..,Rm}
QoS Requirements {Qi1,Qi2,Qi3,..,Qnm}
QoS Achieved {qi1,qi2,qi3,..,qnm}

only local information for node performance measurements
for use in calculating paths in overlay networks as a strategy
for simplifying the computations. Previous studies in tactical
network environments focused on providing a middleware
framework to achieve QoS objectives.

This paper focuses on the architectural concept of Auto-
DRM as well as the development of a network architecture
prototype test bed to support the experimental study. The
remaining portion of this paper is organized as follows. Section
II reviews the theories related to the dynamic resource man-
agement problem. Section III provides an overview of the edge
network architecture in the tactical network environments. An
ETE tactical edge network prototype test bed is also illustrated.
Section IV presents the architectural concept of AutoDRM
as well as details of each key functional component in the
AutoDRM architecture. Section V describes the experimental
setup based on a use case consisting of three user scenarios.
SectionVI discusses the experimental test results. Finally,
section VII provides conclusions of this experimental study
and discusses future research efforts.

II. BACKGROUND THEORY

The dynamic resource management problem is generally
formulated based on the 0-1 Knapsack problem which is
known to be NP-Hard [18] [17]. Table I defines the sets of
general parameters in the resource management problem. A
system can provide n number of independent services (e.g.
VoIP, streaming video, real-time messaging..etc.), n ≥ 1.
There are m number of shared resources (e.g. processing
capacities, queue sizes, network bandwidth..etc.), m ≥ 1. Each
service Si requires a set of shared resources rj to accomplish



Fig. 3. AutoDRM QoS Architectural Concept

its QoS objectives, where i ∈ {1..n} and j ∈ {1..m}. A
portion of resource rj allocated to a service Si is denoted
by rij . Since each service often needs to meet a set of QoS
requirements (e.g. packet latency, packet loss ratio..etc.), Qij

represents a QoS requirement based on a service Si consuming
a shared resource rj . This is done under the constraint that the
total amount of resources is finite such that

∑n
i=1 rij = Rj

and
∑m

j=1 Rj = R, where Rj is the maximum amount of each
shared resource and R is the total available resources in the
system. Since all of the resource requests may not necessarily
be satisfied in a resource constrained environment, an actual
achieved QoS level is represented by qij such that qij ∈ Qij .
In order to accomplish adequate QoS levels for each service,
the following condition must be met.

Maximize

m∑
j=1

xi · qij subject to

m∑
j=1

xi · rij ≤ Rj

where i = {1, ..., n} and xi = {0, 1}

Fundamental theories in developing real-time near-optimal
heuristics are discussed in [12] [13] [18] [17]. These ap-
proaches involve sorting orders in each data set and gradually
assigning a portion of each shared resource rj to each service
Si. When a QoS level qij satisfies the requirement Qij , the
iterative process to assign resources is halted. Otherwise, it

will continue to assign a greater portion from each resource
rj to each service until the upper limit of that resource Rj has
been reached. If a QoS requirement for a service has not been
satisfied after a specific resource Rj has been exhausted, a
decision to accept the current quality or downgrade resources
from other lower priority services is required. The priorities
of services are determined by aggregated QoS policies in the
network domain. This dynamic process repeats itself until
reaching a stable state.

III. NETWORK ARCHITECTURE

A. Tactical Edge Network

The current TSCE system implements the Navy’s open
architecture strategy and has achieved a full commercial off-
the-shelf (COTS) solution. Inspired by the concept of Service
Oriented Architecture (SOA), CANES system aims to perform
more tactical functions while reducing the physical footprint
by consolidating the network architecture across multiple
security enclaves [7]. TSCE and CANES are distributed real-
time enterprise systems typically deployed on tactical afloat
units. Both systems provide various services for the user
communities in the tactical edge networks. Since these services
are deployed in a common network, they often compete for
shared resources. Examples of these shared resources in the
systems include processor units, memory devices, storage



Fig. 4. AutoDRM Functional Block Diagram

disks, networking devices, security devices, and others that
have finite constraints. To ensure that each service is performed
at adequate QoS levels, the AutoDRM function is required in
these edge networks.

B. End-To-End Network Prototype Test Bed
An experimental ETE network prototype test bed as shown

in Fig. 2 was developed in order to host the AutoDRM system.
In order to maintain consistency with the operational view
in Fig. 1, the prototype network includes four representative
network domains: Tactical Edge network, GIG Wide Area
Network (WAN), GIG-N networks, and GIG-N edge network.
The tactical edge network is simulated by a Local Area
Network (LAN) group consisting of several PCs, a network
switch, and a gateway router. For the purpose of simplifying
the prototype test bed development, the router between the
tactical edge network and the GIG WAN is shared. Two
Virtual LANs (VLANs) were configured to represent the
respective network domains. In practice, a gateway router
from the tactical edge network is connected to another router
residing in the GIG WAN domain. A satellite communications
simulator configured with the same settings as in [19], is used
to simulate the network characteristics across a long latency
SATCOM link. An OPNET System-In-The-Loop [20] scenario
was developed to simulate the latency and packet loss rate in
the GIG-N networks. The GIG-N edge network is assumed to
mirror the tactical edge network in the prototype test bed.

IV. AUTODRM SOFTWARE ARCHITECTURE

AutoDRM interfaces with a NMS to provide a dynamic
resource management capability for the tactical edge networks.
Fig. 3 illustrates the QoS concept in the AutoDRM architec-
ture. In the context of QoS, network devices such as routers
and switches can be conceptually represented with a network
packet classifier, various queues, and a packet scheduler.
Depending on the priority tag marked in each packet header
and number of traffic classes, incoming packets are examined
and classified into different outgoing queues. Departures of
the outgoing packets are scheduled using a queuing technique
(e.g. priority queuing, weighted fair queuing..etc.). QoS poli-
cies using differentiation service (DiffServ) [21] [22] can be
configured in each network device to control the behavior of
these QoS related components.

As shown in Fig. 3, an end-user host system (i.e. PC,
server..etc.) executes heterogeneous user applications while
utilizing services provided by a common set of network
protocol stacks (i.e. TCP/IP) in the operating system kernel
[23]. AutoDRM can retrieve and modify user group policy
objects (GPO) which are stored in the Active Directory of the
network domain server. Each GPO defines the QoS parameters
such as data throttle rate and Differentiated Services Code
Point (DSCP) value at the application level on a per-user
or per-computer basis. Upon authentication of a user login
session, the group policy client service retrieves user group



Fig. 5. An Example of Commander’s Intent Schema

policies from the Active Directory server. Depending on the
user’s privilege or the IP address of a host system, GPO
enforces the behavior of the network traffic generation from
each application. More technical details of this policy-based
QoS architecture is discussed in [23]. Based on the dynamics
of the network performance measures, AutoDRM utilizes
the technology by remotely updating the GPOs via external
scripts.

To accomplish the QoS objectives in AutoDRM, Fig. 4
illustrates functional components of AutoDRM which includes
Graphical User Interface (GUI), remote interface, several
input translators, resource negotiator, performance monitor,
and resource allocator. The standalone GUI provides a user
friendly interface for the system administrator and mission
planning operator to perform initial setup and any subsequent
system-level update. The remote user interface provides a
convenient method to remotely control the AutoDRM system.
The following subsections describe detailed functions of the
translators, resource negotiator, performance monitor, and re-
source allocator.

A. Input Translator

Several built-in translators are required for AutoDRM in
order to parse and translate structured documents containing
Commander’s Intent [24], operational task orders (OP Task),
and GIG Service Level Agreement (SLA) [25]. Commander’s
Intent describes the network and application performance
parameters required by the tactical commander. The opera-
tional task orders are typically mission specific and are the
derivatives of communication plans for tactical units. The input
parameters from GIG SLA can be derived from Service Level

Fig. 6. AutoDRM Resource Negotiator Functional Block Diagram

Specifications (SLS) which is a subset of GIG SLA. The
SLS defines the communication parameters for the edge user
communities to subscribe to the GIG networks. All of the
input parameters are assumed to be contained in structured
documents (e.g. XML). Fig. 5 illustrates an example of the
Commander’s Intent schema. The operational task orders and
GIG SLA are assumed to be formatted in a similar fashion. A
parsing function first parses through the structured documents
to extract a set of key communication attributes. A translating
function then converts the extracted attributes into measurable
parameters and stores the information in a translator database.

B. Resource Negotiator

The core function of AutoDRM is the resource negotiator,
which determines the resource allocation based on real-time
network performance measurements and notifications from
NMS. The resource negotiator exploits a real-time near-
optimal heuristic algorithm to determine the resource as-
signments. Fig. 6 depicts the functional block diagram of
the resource negotiator. There are five fundamental functions
in the resource negotiator: data fetch function, parameters
mapping, sorting based on prioritization, resource assignments,
and results transformation.

The data fetch function retrieves translated parameters such
as bandwidth, packet delay, packet loss and other measurable
network parameters from the translator database and the
performance monitor database. The mapping function maps
input parameters into a multidimensional array data structure
where each array represents a services set, a resources set,
a QoS set and other required data sets. The sorting function
uses sorting algorithms (e.g. quick sort, binary sort..etc.) to
efficiently sort each data set based on the prioritization of
each item within the data set. The real-time near-optimal
heuristic algorithm takes the mapped data set and gradually
assigns resources to each task in order to minimize the error
between the requested QoS levels and the actual QoS levels
[13]. The results from the algorithm are transformed in the
results transformation function. The main objective of the



results transformation function is to convert the acceptable
resource assignments into actual user group policies and/or
network configuration formats that can be used to regulate
the QoS behavior of the devices in the edge network domain.
For storage efficiency, a centralized database is shared among
translators, a performance monitor and the resource allocator.
A scheduler in the resource allocator will then update the
GPOs in the network domain using external scripting methods
and/or network device configuration updates via NMS.

C. Performance Monitor

The performance monitor in AutoDRM exploits the rich set
of network monitoring features in NMS to collect real-time
network performance measurements through Simple Network
Management Protocol (SNMP). The major categories of these
features include service polling, data collection, events and
notifications [26]. By leveraging the monitoring features in
NMS, the performance monitor function constantly retrieves
network performance information from the NMS into the
performance monitor database in AutoDRM. In addition, the
performance monitor also interfaces with the Active Directory
server containing the GPOs. Modification of any GPO is
updated in the database as well. Database updates are moni-
tored by the resource negotiator. In the event of any network
performance change (e.g. bandwidth saturation, increase of
packet loss ratio, increase in average packet delay..etc.), the
resource negotiator re-evaluates the QoS requirements and re-
computes resource assignments to mitigate the possibility of
resource contention in the network domain. The performance
monitor makes use of common remote scripting tools and the
development toolkits provided by the NMS for developing the
required software interfaces.

D. Resource Allocator

The resource allocator is primarily responsible for schedul-
ing the configuration updates in the network domain. Similar
to the performance monitor, the resource allocator in Auto-
DRM also interfaces with the NMS to modify the network
configurations in each individual network device as well as
updating user group policies in the network domains by
remote scripting methods. In the event of degraded network
performance, the resource negotiator responds with an updated
resource allocation and stores the necessary changes into the
shared resource allocator database. The resource negotiator
sends out notifications to the resource allocator which then
updates the configurations of affected network devices and the
host systems.

V. EXPERIMENTAL SETUP

To investigate the effectiveness of the AutoDRM system,
a relevant use case consisting of three test scenarios was
developed for the experimental setup. The use case assumes
a user in the tactical edge network is receiving a mission
critical streaming video service from a video server resid-
ing in the GIG-N edge network. The network traffic flow
representing a streaming video service is simulated as an

User Datagram Protocol (UDP) flow using Distributed Internet
Traffic Generator (DITG) [27]. A NMS deployed in the tactical
edge network monitors real-time network performance. The
NMS is pre-configured to generate asynchronous notifications
(i.e. SNMP traps) to the AutoDRM system when certain
network thresholds are met (i.e. packet delay ≥ 5 seconds,
packet loss ≥ 20 pkts). Upon receiving the notifications,
AutoDRM determines that the streaming video service has
the highest priority among other background traffic flows.
Thus, the system provides preferential service to the streaming
video flow by allocating more resources to it. The AutoDRM
resource allocator achieves this goal by updating the policy-
based QoS parameters in the Active Directory as well as
updating QoS policies in the configurations of the router and
the switch within the edge network domain.

For the purpose of performance comparison, three test
scenarios with different configurations were performed. Each
test scenario had different network traffic conditions. The first
test scenario consists of a single streaming video traffic flow
without any background network traffic load. This test scenario
established a baseline test result. Two test scenarios consisting
of a streaming video traffic flow with mixed background
traffic flows were also performed. One test scenario was with
AutoDRM enabled and another test scenario was with Auto-
DRM disabled. The background network traffic contains nine
heterogeneous UDP and TCP flows. Since the performance of
the mission critical streaming video was under investigation,
the packet delay and packet loss were the two key QoS
performance metrics of interests in this experimental setup.

VI. RESULTS AND DISCUSSION

The experimental results for each test scenario are shown in
Fig. 7. The measurements are primarily focused on the QoS
performance of the streaming video traffic flow over an initial
period of five minutes. The QoS performance results include
the packet delay as shown in Fig. 7(a) and the packet loss as
shown in Fig. 7(b). As illustrated in Fig. 7(a), the baseline end-
to-end packet delay for the streaming video flow without any
background network traffic is 0.8 seconds. When the streaming
video service is running with background network traffic and
with AutoDRM system disabled, the end-to-end packet delay
quickly surges to more than 5 seconds after 20 seconds of
run time. The packet delay stays at 5 seconds throughout
the remaining duration of this test scenario. With AutoDRM
system enabled, the NMS generates asynchronous notifications
when the packet delay exceeds 5 seconds threshold at 20
seconds of run time. The packet delay for the streaming video
flow starts to decrease after 130 seconds of run time. The
packet delay becomes stable after 250 seconds of run time.

As shown in Fig. 7(b), baseline packet loss for the streaming
video flow is less than 10 packets at any given time interval.
With AutoDRM system disabled, streaming video flow run-
ning with background network traffic results in packet loss
ranges from 20 to 50 packets after about 10 seconds of run
time. With AutoDRM system enabled, the NMS generates
asynchronous notifications when the packet loss exceeds 20



(a) Packet Delay (sec) (b) Packet Loss (pkt)

Fig. 7. AutoDRM Experimental Results

packets threshold at 10 seconds of run time. The streaming
video flow running with background network traffic shows
improvement of packet loss to less than 10 packets at 130
seconds of run time. It can be concluded that AutoDRM
system takes more than 100 seconds reaction time to improve
both QoS performance metrics of the streaming video flow in
this experimental setup. The time is mostly spent on making
calls to external scripting methods, waiting for GPO to be
updated, and waiting for the network devices’ configurations
to be updated. These actions take approximately 120 seconds
stabilization time. The test results also show that packet delay
performance is improved by 60% and packet loss performance
is improved by 66% in this test scenario.

VII. CONCLUSION

The framework of Automatic Dynamic Resource Manage-
ment architecture has been developed in this experimental
study. An end-to-end network prototype test bed consisting
of real network devices, a simulated SATCOM link, and
an OPNET SITL scenario was also developed to host the
AutoDRM system. Three test scenarios representing three
different network traffic conditions were executed. The test
results demonstrate improved QoS performance in terms of
packet delay and packet loss. The results from these scenarios
indicate that AutoDRM system can be a vital function to
enhance the network QoS performance.

Developing a practical approach for providing ETE QoS
management services through automatic and dynamic mech-
anisms has attracted interest from the user communities. To
achieve the objective, it is important to recognize the necessity
to incorporate network performance and connectivity data with
service request information associated with the application and
the specific services available or supported by the network.
This capability becomes even more important as network
aware applications become available which will be able to take
full advantage of the resource negotiation process presented in
this paper. Future research efforts include using the developed

end-to-end prototype test bed for exploring dynamic QoS opti-
mization mechanisms and policies specifically recognizing the
need to derive network performance from the Commander’s
Intent.
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