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Abstract—This paper presents a methodology for 
rapidly assessing the likely effect of proposed 
initiatives.  We have applied it to initiatives and 
metrics for the counter-IED fight, but the method is 
general.  We build a probabilistic model that provides 
an explicit executable representation of the initiative’s 
likely impact.  The model is used to provide a 
consistent, explicit explanation to decision makers of 
the likely impact of the initiative. Sensitivity analysis 
on the model provides analytic information to support 
development of informative test plans.  The method is 
designed to help when tight time constraints preclude 
or limit traditional test and evaluation methods, as is 
the case for initial decisions by the Joint IED Defeat 
Organization. 
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I. INTRODUCTION 
In traditional military procurement, there is an extensive 
period of testing and evaluation before any new system is 
fielded.  While effective, the traditional procurement 
approach can take years to field a new system.  In some 
cases, we lack the time for testing.  In others, expensive 
testing reveals results which in retrospect should have 
been obvious.  We have developed a general structured 
method which in days to weeks can build a probabilistic 
model of the likely impact of the initiative.  Such a model 
can help focus testing, or aid decisions that must be made 
before testing is complete.  We have applied the model to 
counter-IED initiatives considered by the Joint IED 
Defeat Organization (JIEDDO).   

Improvised explosive devices (IEDs) have become a 
weapon of choice in asymmetric warfare. Until recently 
they were responsible for the majority of casualties in Iraq, 
and recently they have become the leading cause of 
casualties in Afghanistan. JIEDDO’s mission is to defeat 
IEDs as weapons of strategic influence. In particular, 

JIEDDO is expected to field new counter-IED (C-IED) 
initiatives much more rapidly than the traditional 
Department of Defense procurement process. Therefore, it 
cannot wait for the results of extensive testing: rapid 
funding (and re-funding) decisions must be made with 
limited information. The initiatives involve diverse 
technologies across a wide spectrum of potential C-IED 
applications, and are fielded in multiple theaters. 
Initiatives arrive for consideration on a frequent but 
irregular basis.  

JIEDDO has developed a streamlined acquisition 
process – the Joint IED Capability Approval and 
Acquisition Management Process (JCAAMP).  Key 
features include the irregular arrival of new initiatives, 
and very rapid turnaround. Our method is not specific to 
JCAAMP, but but these features compel an agile method 
such as ours.   JIEDDO must rapidly assess the value to 
warfighters and decide within weeks whether or not to 
fund an initiative. Thus, measures of effectiveness for 
new initiatives must be developed very rapidly.  Ideally, 
these measures should be comparable across different 
initiatives. The method should identify parameters for 
further data collection. Then when additional test, 
operational or field data are collected, it should be 
possible to update these measures and metrics based on 
the new information. 

It follows that our initiative assessment methodology 
must provide an analyst with a way to rapidly:  

- Formulate analytic measures or metrics for each 
initiative that are comparable across initiatives;  

- Generate an explicit analytical representation of the 
explanation for how the initiative will work;  

- Predict the qualitative impact of the initiative on 
consistent and comparable measures or metrics;  

- Use data when available to estimate those measures 
or metrics for new initiatives;  

- Identify parameters for which additional testing 
would have significant payoff; and  

- Update those same measures and metrics based on 
new test, field or operations data.  

In this paper we present such an initiative assessment 
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methodology and demonstrate its application to a case 
study. 

II. MODELING APPROACH 
We created a structured modeling method for initiative 
analysis, using Bayesian networks (BNs).  BNs provide 
an intuitive graphical representation of causal 
dependencies, and propagate uncertainties through the 
model.  The method has two top-level steps: 

1. Identify the relevant Measures of Performance 
(MOPs). Using a common, consistent set of MOPs 
allows comparison of diverse initiatives. 1 

2. Model the dependence of the MOPs on system and 
environmental variables.  The model is high-level, 
often reflecting only qualitative assessments of the 
influences.   

Because engineering test results are not available at 
initial assessment, the modeling approach must exploit 
knowledge in other forms.  Typically, knowledge comes 
from Subject Mater Experts (SME), from requirements 
documents from the field, from the contractor who is 
proposing the initiative, and from experience with 
previous initiatives.  This information is assembled into a 
BN to predict the likely impact of the initiative. 

The impact assessment methodology should also: 

- Prioritize future information collection.   

- Integrate with portfolio management, to optimize 
investment in a set of initiatives. 

- Provide a consistent, repeatable, and extensible 
model.   

III. METHODOLOGY 

This section discusses the rapid assessment methodology 
and the sensitivity analysis metrics that we use. 

A. Rapid assessment methodology   

Our methodology has 6 steps, similar to the knowledge 
engineering methodologies described in [1] and [2]. (In 
reality, there is continuous feedback and frequent 
interaction with SMEs, as depicted in Figure 1.) The steps 
are: 

1. Identify MOPs:  

- Create a variable for each MOP.  

- Specify clear operational definitions for each variable.  

- Determine the state space for each variable.  

- Identify primary indicators of the MOPs. Connect 

                                                           
1 In our case, MOPs have been identified by JIEDDO for important 
classes of C-IED initiatives.   

each MOP directly to a variable that toggles the 
initiative on and off (or switches among alternatives). 
Estimate the MOPs using the model. Assess the 
model to rank the MOPs according to need for 
refinement.  

2. Generate an Explanation of how the initiative is 
expected to affect the MOPs.  

3. Implement the explanation as a probabilistic model.  
This step is a loop where we repeat until satisfied or 
out of time: 

-  Select most important variable to refine (the target).  

- Refine definitions and state space for the variable. 
(For example, transform a qualitative “high, med, 
low” variable to a quantitative one.)  

- Identify the “first-order” causes and effects of the 
target.  

o Identify the primary causes of the target.  

o Identify any additional key indicators 
(typically effects that are easier to measure 
than the target itself)  

o Create variables for the causes and 
indicators  

o Specify clear operational definitions for 
each variable  

o Determine the state space for each variable  

- Determine the dependence relationships among the 
variables. Estimate local distributions.  

o Determine the structural assumptions for the 
local probability distributions.  

o Determine the values of any free parameters. 

 
Figure 1. The Rapid Assessment Process. 



- Select various combinations of causes (parents) and 
indicators (children), and check that results are in line 
with expectations, or justified. Modify and recheck as 
required.  

- Document assumptions & limitations. Quantify 
uncertainties and bound errors, if possible. Determine 
what you most need to know next.  

- Evaluate the model. 

o Internally, by team review  

o Internally, via sensitivity analyses  

o Externally, by consulting with SMEs 

4. Execute & Analyze the Model to Assess Performance 
– there are several possibilities, including: 

o Set input variables for use cases, and 
evaluate the predicted effect on various 
MOPs for those cases. 

o Embed the model in a simulation-style 
scenario, and “roll up” performance for the 
whole scenario. 

o Systematically vary the value of a variable 
or parameter, and graph the effect on MOPs. 
This overlaps with the next step. 

5. Determine the Sensitive Parameters (SPs). Create 
final ranked list of SPs for each MOP. Use both 
subjective judgment from the model-building and 
formal methods such as those described under 
“Sensitivity Analysis,” below. 

6. Report Findings 

B. Sensitivity Analysis 
We employ four kinds of formal sensitivity analysis:  

1. Global sensitivity to findings: Mutual Information; 

2. Local sensitivity to findings: Link Strength;  

3. Sensitivity to particular parameters (probabilities) 
in the model; 

4. Change plots (dx/dy) for sensitivity to particular 
parameters identified in previous steps, and of 
practical interest (e.g. because we can test or 
control them)..  

We describe these below. 

 

1)   Mutual Information:  The mutual information 
between X and Y is the amount of uncertainty in Y that 
we eliminate by knowing X (and vice versa). 
Information is measured in bits, and is formally 
equivalent to the number of well-chosen yes/no 

questions we would need to determine the actual value 
of the variable. For example, let X be the unknown 
outcome of a fair coin toss. Because a single question 
(“Was it heads?”) will tell us the answer, there is 1 bit 
of information in the variable.  Now suppose that X is 
the height of a person.  Let Y be their sex.  Learning 
their sex will reduce our uncertainty about their height.  
The mutual information measures that change in 
certainty. By how many yes/no questions have we 
reduced the uncertainty?  Formally, it’s just the 
difference in information. Let MI(X,Y) be the mutual 
information between X and Y, and let H(⋅) be the 
information in a variable, and let “|” mean “given”. 
Then:  

 MI(X,Y)=H(X)-H(X|Y) 

Mutual information is an absolute measure whose 
scale varies with the number of states of the variables – 
we need more questions to determine the outcome of a die 
roll than a coin toss. Therefore, we consider three variants, 
all on a scale from zero to 1.  

Scaled MI uses a scale in which 1 is the MI of a 
uniform distribution on Y. This is useful for tracking 
progress in learning Y, such as in a sensor-tasking system, 
since it provides a stable reference.  

Normalized MI uses a scale in which 1 is the highest 
MI in the current set X of potential measurements. This 
presents each potential variable to observe as a proportion 
of the best one.  

CXY uses a scale in which 1 is the current H(Y). It 

represents the proportion of uncertainty reduced, so that 1 
means that X fully determines Y.  

2) Link Strength: MI is defined between any two 

Figure 2: Example Link Strength Graph for Intelligence Potential. 



nodes, or sets of nodes. However, if there are multiple 
paths, it might be that one carries most of the influence. 
A link strength measure allows us to examine the 
individual influence of each arc. 

Ebert-Uphoff defined several measures of link strength 
based on Mutual Information, drawing on the earlier work 
by Nicholson & Jitnah. The two most important are true 
average link strength (LST) and blind average link 
strength  (LSB).   Both are based on the mutual 
information between X and Y, conditional on Z, the set of 
all the other parents of Y.  Conditioning on the other 
parents isolates the influence of X alone, mimicking an 
intervention.  LSB  makes simplifying assumptions and 
can be calculated without performing any inference at all. 
We take a slightly different approach. 

Cut link strength compares P(Y|x) with and without 
the link . This was the “gold standard” that 
Nicholson & Jitnah [3] used to evaluate their (link-
strength-like) approximate inference. But we can afford to 
use the gold standard itself. 

When cutting the arc , we average over X.  This 
operation does not change the overall (marginal) 
distribution on Y.  However, unless the arc was spurious, 
the new P(Y|x) will differ from the old for at least some 
x∈X. To isolate the influence of X alone, we use an 
intervention operator (denoted “||”) rather than a regular 
conditioning operator (“|”). It has much the same effect as 
fixing all the other parents at all values, but is more 
efficient.   In symbols, let P(Y||x) be the distribution in the 
original graph, and let Q(Y||x) be the distribution in the 
new graph, with  cut. The link strength is the 
expected distance between these two distributions:  

 

 

We considered two Distance functions, Kullback-Leibler 
divergence (KLD) and NonOverlap. Although KLD is the 
closest to MI, it is highly nonlinear and hard to interpret. 
Therefore we used 1-Overlap:  

 
 

1-Overlap is a true distance measure ranging from 0 
(identical) to 1 (no overlap).  

Ebert-Uphoff wrote his scripts for the Matlab-based 
Bayes Net Toolbox (BNT) [5] and Intel’s Probabilistic 
Network Library (BNT’s C++ offspring) [6]. We 
implemented our variant in Quiddity*Script [7]. It would 
be relatively easy to do the same for Netica [8]. Like 

Ebert-Uphoff, we rely on Graphviz [9] for the actual 
graph drawing.  Figure 2 shows an example. 

3) Sensitivity to CPT Parameters 
If y is continuous, then by definition, 

 , which gives the slope along 
x of p(y|e) near the current value of x. For example, x may 
be a particular probability in a CPT, such as 
P(tuberculosis=true | xray=true). There are efficient 

methods to calculate using only 3 inference 
propagations, after which querying for that slope at any x 
is constant time. However, even without that, we can just 
vary the parameter over its range, and plot the effect on 
the MOPs of interest. 

IV. EXAMPLE 
In this section we apply the rapid assessment 
methodology to a generic explosive ordnance disposal 
(EOD) robot. Any EOD robot provides a capability to 
remotely neutralize an IED, either by disabling it or 
detonating it. We assume that if the robot is unavailable 
or unsuccessful, an EOD soldier will neutralize the IED.  

To develop the model, we executed the five steps of 
the assessment methodology:  

1. Identify relevant MOPs.  

2. Generate an Explanation of how the initiative is 
expected to affect MOPs.  

3. Implement the explanation as a probabilistic 
model.  

4. Execute & analyze model to assess performance  

5. Determine the sensitive parameters (SPs) to help 
prioritize information collection.  

6. Report findings. 

C. Identify MOPs 
Figure 4 shows the MOPs deemed relevant, and the 

assumptions and considerations to use in the model. Note 
that the robot does not affect detection, so there are no 
Detection MOPs. 

 

Figure 3.   MOPs for the EOD Robot. 



D. Generate an Explanation 
The explanation describes the influences of important 
system and environmental variables on the MOPs. In this 
explanation, we assume that an IED is present and has 
been successfully detected. 

- If a robot is available and working correctly, it can be 
used to attempt to disable or detonate an IED.  

- If there is a Red detonation during neutralization, 
Blue soldiers are not exposed.  The robot may be 
damaged or destroyed.  

- If the robot is not available or not successful, a 
soldier will be at risk while disabling the IED 

- If the robot succeeds in disabling the IED, we can 
gather forensic intelligence. 

- Little intelligence can be collected if the robot 
detonates the IED.  

- Using the robot may take longer than using an EOD 
soldier.  

- If unsuccessful, a soldier must still disable the IED. 

E. Implement the explanation as a probabilistic model. 
Our explanation can be transformed directly to a 
structural model, or graph, as shown in Figure 4. For 
example, the top three nodes allow us to express that we 
will only use the robot if it is available (on this RCT) and 
ready. The MOP clearTime depends on the 
robotResult: was the robot used, did Red detonate the 
IED against the robot, or did it work (and if so, did it 
disable or destroy the IED)? 

 
Figure 4.  The Robot Explanation Model. 

The next step is to specify the domain of each variable. 

In practice, the domain evolves with the struture, as 
modeling choices are made. The model shown here is 
already the 6th revision. The revision incorporates 
feedback from modelers unfamiliar with Bayesian 
networks, to make it more intelligible. 

Local probability distributions for each node are 
generated based on an available knowledge.  Without 
engineering test data, they will necessarily be qualitative. 

F. Execute & analyze model to assess performance 
The quickest and most intuitive analysis is to interact with 
the model in a live session. The following screenshots are 
taken from the Netica GUI2.  

 

 
Figure 5.  Model Results Showing Impact of Robot Availability on 

Damage Potential and Clear Time (minutes). 

Figure 5 shows that if the robot is not available, then a 
soldier is at risk while disabling the IED (top), and that if 
a robot is available and it is working correctly, it takes 
most of the soldier’s risk, and affects the clear time. 

These distributions are the logical consequences of 
our explanation and assumptions. We should not believe 
the three-decimal-place estimate of a 6.84% probability of 
disposal in under 10 minutes.  But given our assumptions, 
we should believe the robot increases the time, roughly as 
shown. The wide distribution on clear time averages over 
the distributions for various unobserved ancestor variables 
(conditioned on downstream evidence, if any). 

Finally, our Intelligence MOP reflects our 
understanding that if the robot succeeds in disabling the 
IED, it can be examined for forensic intelligence. Less 
intelligence can be collected if the robot detonates the 
IED. 

                                                           
2 The Netica GUI is cleaner and more compact than the Quiddity GUI. 



 

 
Figure 6.  Model Results Showing Impact of Robot on Intelligence 

Collection. 

G. Determine the sensitive parameters (SPs) 
Executable models foster sensitivity analysis. In a 
Bayesian network, we look first at the mutual information 
between variables. The mutual information between X and 
Y is the amount of uncertainty in Y that we eliminate by 
knowing X (and vice versa). Table 1 shows the Top 5 
most influential variables for each of the three main 
MOPs, assuming robotAvailable has value true.3 

The key performance parameters (KPPs) here are δ = 
P(Red Detonates) and the conditional probability ρ = 
P(Red Detonates on Robot | Red Detonates). In our model, 
they dominate intrinsic parameters such as reliability 
(Readiness) and effectiveness. After all, the main reason 
for using the robot is to prevent casualties. 
e Intelligence Damage
Red Detonates on Robot Red Detonates on Robot Red Detonation
Red Detonation Red Detonation Red Detonates on

Robot 
Readiness P(Disable Success) P(Effective)
P(Effective) P(Effective) Readiness
P(Disable Success) Readiness – 

Table 1:  Robot: Top 5 Sensitive Parameters by MOP.  Assumes the 
robot is available, and excludes uninteresting nodes. Names are made 

into readable English. 

Table 1 ranks the MOPs.  We could look at the mutual 
information values themselves, but those represent 
average effects. Figure 7 plots three MOPs versus 
ρ, Red’s tendency to target the robot.  The effect is quite 
strong, in part because ρ=0 is equivalent to having a 
perfectly reliable robot, and ρ=1 is like having no robot.   

That said, the probability of a causalty drops from 
80% to 55%, and our chance of getting “High” 
intelligence drops from 50% to 0.  This follows from our 
assumption that a robot is used if it is available and 
working. If Red destroys the robot, we lose our chance for 
gathering intelligence.  

                                                           
3 Excluding uninteresting variables such as deterministic indicators. 

 
Figure 7.   Sensitivity Analysis showing the influence of Red tactics:  a 

command detonation of the IED on the robot. 

More dramatic, but far less interesting, the average 
time drops in half, from 36 min to 16 min. This merely 
reflects the fact that once the IED detonates, we don’t 
have to try to disable it anymore.  

V. CONCLUSION 
This rapid initiative evaluation methodology provides a 
structured approach for assessing initiatives even when 
there is little formal test data.  We begin with relevant 
MOPs, explain how the initiative will affect the MOPs, 
and build a probabilistic model of that explanation.  The 
graphical structure shows the influences. Adding local 
probability distributions makes the model executable.  
Executing the model provides average effects, what-if 
scenarios, and sensitivity analysis.  These in turn can 
guide formal testing. 
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