A Decision Analytic Approach for Measuring the Value of Counter-IED Solutions at the Joint Improvised Explosive Device Defeat Organization

Presentation to AFCEA-GMU

18-19 May 2010

Ronald Woodaman*, Andrew Loerch**, Kathryn Laskey**

*C4I Center, **SEOR Dept

George Mason University

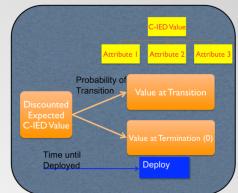
FOR OFFICIAL USE ONLY

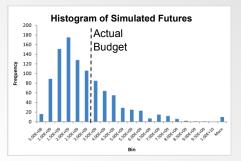
Overall Problem Statement

- During peacetime, defense organizations conduct deliberate planning against an envisioned set of future threats.
- Defense investments are made based on an annual budgetary cycle.
 - <u>Knapsack Problem</u>
- Short conflicts are fought with the peacetime inventory.
- During longer conflicts, the defense establishment can seek to improve its inventory.
- The battlefield presents a co-evolving landscape.
- Opportunities to improve the inventory arrive irregularly over time.
- Good solutions not exploited as quickly as possible lead to lost opportunities.
- But poor solutions rob resources from good solutions that arrive later.
- How to maximize the effectiveness of the defense portfolio when decisions must be made sequentially?
 - Dynamic Stochastic Knapsack

Case Study: JIEDDO

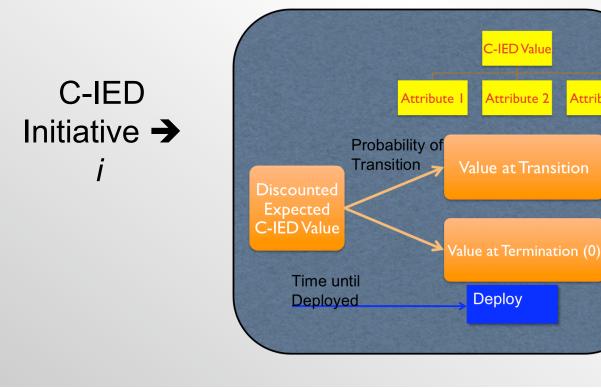
- With an average annual budget of \$2.4B, JIEDDO funds a great variety of possible counter-IED solutions: initiatives that range from intelligence centers to sensors to training programs.
- JIEDDO faces increasing scrutiny of its investment decisions from oversight organizations (Congress, GAO, OSD-CAPE) while its budget is anticipated to decline.
- To enhance its responsiveness to the war effort, JIEDDO considers solutions sequentially.
- With funding diminishing, JIEDDO will have to become more selective.
- JIEDDO lacks quantitative methods to support its decisions and defend these against scrutiny.


JIEDDO Case Study Objectives


- Three objectives:
 - How to measure the quantitative value of its C-IED initiatives in the context of portfolio selection decisions;
 - How to generate statistical forecast of future quantities, costs, and values of arriving C-IED initiatives in a given funding period at a level that will support enterprise-level resourcing and planning;
 - How to select randomly arriving initiatives for inclusion in a portfolio of C-IED solutions in order to maximize overall portfolio value.
- In the end-state, it is desired that the research support transition of technologies that can run on JIEDDO computers and be employed by JIEDDO personnel.

Bottom Line up Front

- Measuring the Value of C-IED Solutions
 - Developing a decision analytic prototype
 - Uses a multi-attribute utility approach to measure Potential C-IED Value (*PCV*)
 - Calculates Discounted Expected PCV (*DE-PCV*) using likelihood of transition, discounting for time until deployed.
- Future Initiative Stream Simulation (FISS)
 - Modeled sequence of initiatives as a random arrival process w/ jointly distributed initiative cost, value
 - Generates futures via Monte Carlo simulation using parameters from analysis of initiative history
- C-IED Portfolio Optimizer (CIPO)
 - Given cost and value of a set S of initiatives and an estimate of cost and value of future arrivals, which subset of S maximizes expected portfolio value?
 - Have solved as 2-stage stochastic integer program
 - Developing approximate dynamic programming version.



FOR OFFICIAL USE ONLY

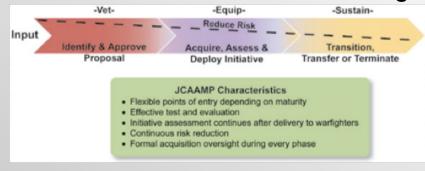
Measuring Initiative Valued: Desired Endstate

- Every initiative is evaluated for its overall value based on how well it addresses overall C-IED needs, its likelihood of transition, and the time until it can deploy.
- Overtime, this measure is updated for subsequent decisions as new information becomes available.

Attribute 3

Quantitative → Measure of the Value of Initiative *i*

Counter-IED Lines of Operations


- JIEDDO partitions its counter-IED efforts into *Lines of Operation* (LOO):
 - Attack the Network (AtN) preventing IEDs from reaching their intended time and place of employment.
 - Defeat the Device (DtD) preventing IEDs that have reached their intended place of employment from achieving their intended effects.
 - Train the Force (TtF) enhancing the counter-IED training of individuals and units.

JCAAMP

7

- Joint Improvised Explosive Device Defeat Capability Approval and Acquisition Management Process (JCAAMP)
- Sequential funding steps
- 2 years of sustainment once deployed after which must transition to Title 10 organization (usually a Military Service)
- Process conducted within each LOO but integrated at the Vice Director level for actual funding.

- Increasing desire for decisions to be done across the LOOs (source: J-8 Comptroller).
- Primary cause for selecting an initiative for funding is whether it aligns with a stated need - usually a Joint Urgent Operational Needs (JUONS).
- Choosing an initiative is easier when the initiative x to JUONS y mapping is one-to-one.
- Harder when multiple initiatives map to the same JUONS - or when there is no JUONS for the initiative.

Some Literature

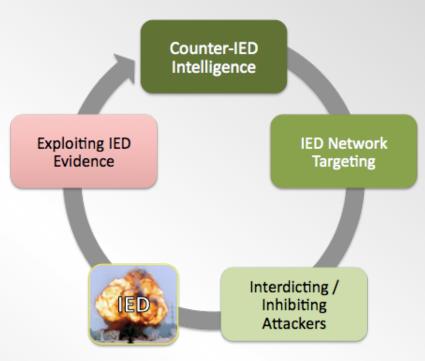
- Brown, G. G., R. F. Dell, A. G. Loerch, A. M. Newman. "Optimizing Capital Planning." In Methods for Conducting Military Operational Analysis, edited by A. G. Loerch and L. B. Rainey, Washington: Military Operations Research Society, 2007.
- Dell, R. F. and W. F. Tarantino. How Optimization Supports Army Base Closure and Realignment. Technical Report, NPS-OR-03-003-PR, Naval Postgraduate School, 2003.
- Joint Improvised Explosive Device Defeat Organization. JIEDDO Strategy for FY09-10. Washington: 2009.
- Kirkwood, C. W. Strategic Decision Making: Multiobjective Decision Analysis with Spreadsheets. Belmont, CA: Duxbury Press, 1997.
- Loerch, A. G., R. R. Koury, and D. T. Maxwell. Value Added Analysis for Army Equipment Modernization. *Naval Research Logistics*, 46 (1999), 233-253.
- Parnell, G.S., G.E. Bennett, J.A. Engelbrecht, R. Szafranski. Improving resource allocation within the National Reconnaissance Office. *Interfaces*, **32**, 77-90. 2002.
- Parnell, G. S. et al. Air Force Research Laboratory Space Technology Value Model: Creating Capabilities for Future Customers. *Military Operations Research*, **9**, 5-17. 2003.
- Parnell, G. S. "Value-Focused Thinking." In *Methods for Conducting Military Operational Analysis*, edited by A. G. Loerch and L. B. Rainey, Washington: Military Operations Research Society, 2007.

Approach

- Employed a combination of Parnell's Silver and Gold standards:
 - Silver standard: model based upon interactions with an organization's mid-level decision makers.
 - Gold standard: model based upon an organization's strategy and vision literature.
- Used a year's worth of observation of JCAAMP decisions to develop the prototype.
- Used brainstorming and affinity exercise to develop a set of concepts that defined value, which we grouped into a hierarchy.
- Mathematically, we evolved from an additive model to a hybrid additive-multiplicative model.

JIEDDO Strategic Objectives

- From interviews with key personnel and our review of JIEDDO Strategy, we identified three JIEDDO strategic objectives to fulfill when selecting initiatives for funding.
 - SO 1: Reduce the impact of IED incidents
 - SO 2: Respond to the Warfighter's needs quickly
 - SO 3: Transition funded initiatives to the Services


SO1: Reduce the Impact of IEDs

- For this strategic objective, we identified three goals, which map naturally aligned to the LOOs
 - Goal 1: Decrease the number IEDs reaching intended time and place of employment (AtN)
 - Goal 2: Decrease the effects of the IEDs that have reached their intended time and place of employment (DtD)
 - Goal 3: Improve effectiveness of counter-IED training for individuals and units (TtF) to make these better at Goal 1 and Goal 2.
- Challenge: how to decompose these goals into sub-goals that bring us closer to something measurable.

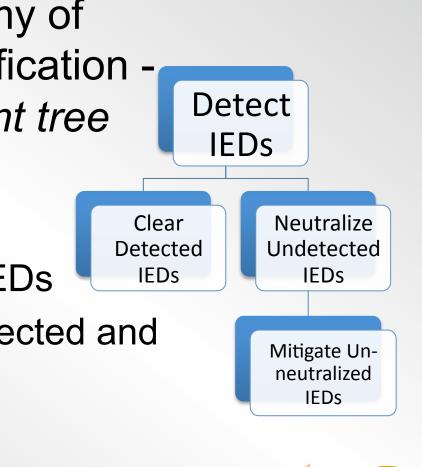
Goal 1: Decrease Number of IEDs that Reach their Intended Place of Employment

- AtN has two current *Tenets*:
 - Predict and Prevent
 - Detect (Air)
- This was not helpful for developing a means to bin AtN initiatives.
- We examined the nature and function of AtN initiatives and developed a cyclical concept of AtN that provided more bins and a more intuitive decomposition.

Goal 1 Examples

- Counter IED
 Intel:
 - Software
 - Websites
 - Products
 - Productivity tools
 - Sources

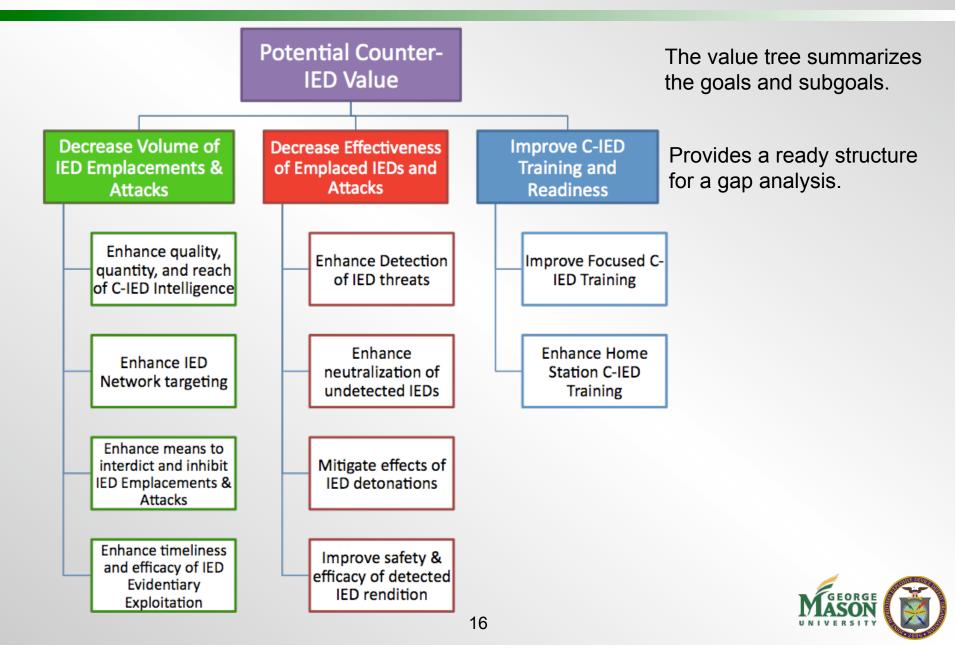
- IED Network Targeting:
- Signals
- Cueing
 Fusion
- Social Network Analysis
- Signatures
- Biometric


- Interdicting / Inhibiting:
 - Airborne Surveillance
 - Culvert
 Denial
 - Route sanitation
 - Sniper system:

- Exploiting IED Evidence:
 - Unit level analysis
 - CEXC
 - FBI Labs

Goal 2: Decreasing effects of IED at the Intended Place of Employment

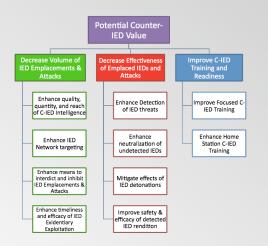
- JIEDDO has a taxonomy of *Tenets* that - with modification provided a natural *event tree* structure:
 - Detect IEDs
 - Neutralize undetected IEDs
 - Mitigate effects of undetected and un-neutralized IEDs
 - Clear detected IEDs



Goal 3: Enhance Counter-IED Training

- Two major areas:
 - Improve Home-station training
 - Units and individuals
 - Improve Focused Training
 - Schools individuals
 - Training Centers units

Potential Counter-IED (PCV) Value Tree


Measuring Goal Fulfillment

- An Evaluative Measure (EM) is intended to measure degree of goal fulfillment.
- EM's may be direct or proxy, and their units can be real or constructed.
- Because JIEDDO's initiatives contribute to an overall set of capabilities, measures must focus on identifying net contribution of an initiative.
- We have developed a candidate set of measures (making no particular claim as to their efficacy).

Postulated EM Set

Goal	Model	Measure
Enhance Quantity, Quality, & Reach (QQR) of C-IED Intelligence	QQR := Intel Volume (TB) * Readership / Avg Product Age (days)	% Improvement in QQR
Enhance IED Cell Targeting	Target Service Rates Vector (TSRV) := $\{V_j: f \text{ is the set of IED cell} $ functions $\}$	Sum of Estimated % Improvements in TSRV
Enhance Means to Interdict & Inhibit	High Threat Attack Rates Vector (HTARV) := $\{Ar_i: i \text{ is the set of high threat IEDs}\}$	Sum of Estimated % Decrease in HTARV
Enhance IED Evidentiary Exploitation	Exploitation Volume Rate (EVR) := Incident Intel Volume (TB) / Weighted Processing Time (days)	% Improvement in EVR
Enhance Means of IED Detection	Found & Cleared Rate Vector (FCRV) := $\{FCr_i: i \text{ is the set of high threat} $ IEDs $\}$	Sum of Estimated % Improvements in FCRV
Enhance Means of IED Neutralization	Probability of Neutralization Vector (PNV) := $\{PN_i: i \text{ is the set of high threat IEDs}\}$	Sum of Estimated % Improvements in PNV
Enhance Mitigation of IED Effects	IED Casualties Rate Vector (ICRV) := $\{Cr_i: i \text{ is the set of high threat IEDs}\}$	Sum of Estimated % Improvements in ICRV
Improve Means of IED Reduction	IED Reduction Rate Vector (IRRV) := $\{Rr_i: i \text{ is the set of high threat IEDs}\}$	Sum of Estimated % Improvements in IRRV
Improve Focused C-IED Training	Quantity Quality Volume := Hours * Throughput / Class Size / Content Age	Estimated % Improvement
Improve Home Station Training	Quantity Quality Volume := Hours * Throughput / Class Size / Content Age	Estimated % Improvement

- The EMs align with the subgoals.
- This set provides an integrated approach to identify gaps in capability.

Postulated EM Set

Goal	Model	Measure	Pote	ntial Counter-
Enhance Quantity,	QQR := Intel Volume (TB) *	% Improvement in		IED Value
Quality, & Reach	Readership / Avg Product Age (days)	QQR		ease Effectiveness Improve C-IED mplaced IEDs and Training and
(QQR) of C-IED			Attacks	Attacks Readiness
Intelligence			Enhance quality, quantity, and reach of C-IED Intelligence	Enhance Detection Improve Focused C- of IED threats IED Training
Enhance IED Cell	Target Service Rates Vector (TSRV)	Sum of Estimated %	of C-IED Intelligence	
Targeting	$:= \{V_f: f \text{ is the set of IED cell} \}$	Improvements in	Enhance IED Network targeting	Enhance Enhance Home neutralization of Station C-IED undetected IEDs Training
Enhance Means to	functions}	TSRV	Enhance means to	
Enhance Means to Interdict & In	High Threat Attack Rates Vector	Sum of Estimated %	interdict and inhibit	Mitigate effects of IED detonations
merulet & m				nprove safety &
Enhance IED				icacy of detected IED rendition
	Fach of these m			
Exploitation	Each of these me	etrics is st	ill at a	P 10
Enhance Mea			s align with	
IED Detection	high level of aggregation.			goals.
	ingri ievei oi agg	gouis.		
Enhance Mea				
IED				provides an
Neutralization	It may prove more	re fruitful to	o create	ed approach
Enhance Mitigation of	it may prove me.		e el eate	
Effects	another lover of	aala		fy gaps in
Improve Mea	another layer of	goais.		ty.
IED Reductio				cy.
Improve Focused	Quantity Quality Volume := Hours *	Estimated %		
C-IED Training	Throughput / Class Size / Content Age	Improvement		
Improve Home	Quantity Quality Volume := Hours *	Estimated %		A CONTRACTOR
Station Training	Throughput / Class Size / Content Age	Improvement		

Measuring PCV

- We have a hierarchy of goals and associated evaluative measures.
- For each evaluative measures we need a value function to translate a point on the measure scale to a point on the normalized value scale; e.g., [0,100], or [0,1.0].
 - If x_{mi} is the measured level of *i*th alternative on the *m*th evaluative measure, then the corresponding value level is obtained from the value function $v_m(x_{mi})$
 - A simple approach is to identify minimal and maximal acceptable levels, min_m and max_m , and use a linear transformation.
 - Then $v_m(x_{mi}) = (x_{mi} min_m) / (max_m min_m)$, for x_{mi} on $[min_m, max_m]$
 - If $x_{mi} < min_m$, $v_m(x_{mi}) = 0$, and If $x_{mi} > max_m$, $v_m(x_{mi}) = 1$

 $\square m$

• To obtain the overall value of an initiative, we need to obtain a weighted average of the value scores.

$$PCV(i) = \sum_{m} w_{m} v_{m}(x_{m,i})$$
$$\sum_{m} w_{m} = 1$$

Obtaining Weights

- Swing Weights are preferred in much of the Decision Analytic literature.
 - Measures change in overall value that results when the evaluative measure *swings* from least acceptable value to highest acceptable value.
 - Incorporates both the importance of the attribute and its feasible measure range.
 - Require *elicitation* from decision makers
 - Many techniques to do this.
- Example: among the 5 cars that Greg likes most, the most important attribute of the many he is considering is color. But he discovers that all 5 cars are available in hot pink, his favorite. How much weight should he assign this attribute?

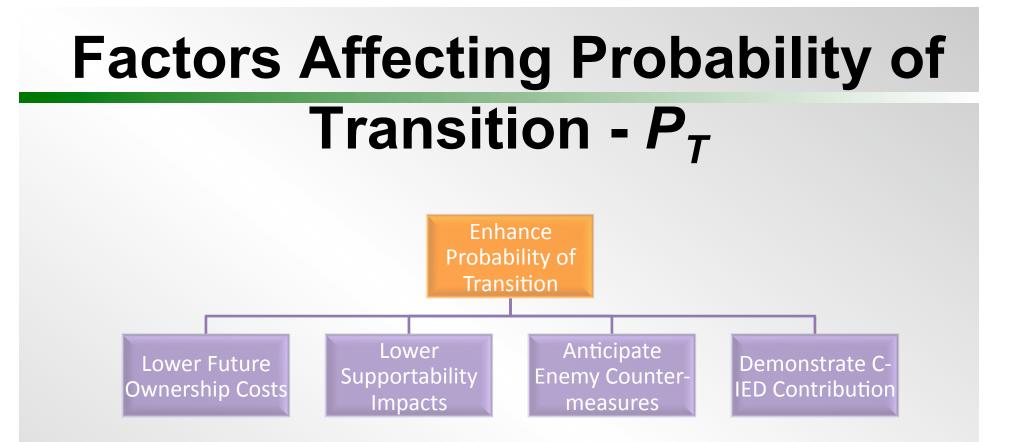
POSREP

- Where are we...
 - Measuring Value of C-IED Initiatives
 - SO1: Reducing the impact of IED incidents
- Up Next:
 - SO 2: Respond to the Warfighter's needs quickly
 - SO 3: Transition funded initiatives to the Services

SO 2: Respond to the Warfighter's Needs Quickly

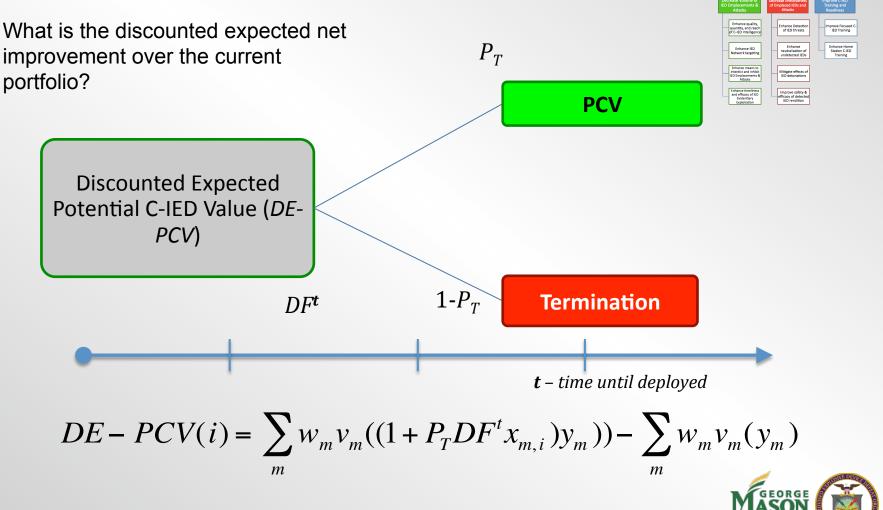
- This objective seeks to deliver capability to the warfighter as quickly as possible.
- When shown two items of equal counter-IED potential, how much more valuable is the item that can deploy sooner?
 - Discounting is the standard process when comparing cash flow over time - this is the basis for measuring Net Present Value.
 - If *DF* is the discount factor (0 <*DF* <1), and *t* is the amount of time we will wait to get value *x*, then the value of *x* today is *DF^tx*
 - For cash flows, we use a standard lending rate. How much to discount IED initiatives?

Factors to Consider when Discounting Counter-IED Initiatives


- Only one discount rate needed if there are no factors to consider.
- However, there maybe other considerations that differentiate the willingness of the warfighter to wait for otherwise equally valuable items.
- Main factor we have identified is the urgency of the requirement:
 - An active JUONS would have highest discount factor.
 - Other requirement documentation such as service-specific requirement documents and technology roadmaps might have a lower discount factor.
 - No requirement document would have the lowest.

SO 3: Transition Initiatives to a Service

- Clearly higher potential is correlated with higher likelihood to transition.
- What might differentiate the likelihood of transitioning for items with equal potential?
- We have identified four issues:
 - Future Total Ownership Cost the cost for JIEDDO may be a different issue than the service's costs of adoption
 - Supportability how hard is it for a service to adopt DOTMLPF issues
 - Defeat-ability the ease with which the enemy might counter the initiative over time
 - Demonstrated performance what evidence exists that the potential might be achieved



- These factors are restated as goals.
- This structure represents a *hypothesis* we need to conduct an analysis of those that transitioned vs those that did not to better inform the method for assessing this probability.

Discounted Expected Potential C-IED Value

An Example: Setting the Stage

- JIEDDO has incorporated the approach advocated here.
- They use the Planning Board for Development (PB4D) to score the initiatives.
- They hold periodic off-sites to assess the overall capability set as % of the envisioned ideal by attribute, and to reassess the swing weights based upon their understanding of theater priorities and threat trends.
- The latest off-site resulted in the following assessment of capability levels and the resulting set of weights.

Evaluative Measure	Current Level (% of Max Preferred)	Rank	Raw Swing Wt	Normalized Swing Wt	Enhance Quantity, Quality, & Reach of C-IED Intelligence
C-IED Intelligence	50%	5	40	0.115	Improve Home Enhance IED Cell
IED Cell Targeting	20%	1	60	0.172	Station Training Targeting
Interdict & Inhibit	20%	2	50	0.143	Improve Focused C- Enhance Means to
Evidentiary Exploitation	70%	7	30	0.086	IED Training Interdict & Inhibit
IED Detection	40%	3	45	0.129	0% Enhance IED
IED Neutralization	20%	4	41	0.117	Improve Means of IED Reduction
IED Effect Mitigation	30%	6	35	0.100	Exploitation
IED Reduction	80%	10	10	0.029	Enhance Mitigation Enhance Means of of IED Effects IED Detection
Focused Training	70%	9	15	0.043	Enhance Means of
Home Station Training	50%	8	23	0.066	IED Neutralization

An Example: At PB4D Today

- The PB4D must consider three new initiatives:
 - Ground Sensor A: improves detection of a particularly lethal class of IEDs.
 - Intelligence Analyst Software B: improves analyst productivity.
 - Training System C: improves home station throughput and training content currency.

Ground Sensor A

- Potential Counter-IED Value evidence
 - Detects a lethal class of IEDs 60% of the time.
 - 300% improvement over U.S. forces current ability (20% detection rate).
 - This class of IEDs causes 40% of all IED casualties.
 - Sensor A has the potential to cut these casualties in half.
 - In terms of coalition forces' total ability to detect all types of IEDs, as weighted by IED-casualties, Ground Sensor A improves overall detection capability by 20%.
- Probability of transition factors
 - System has been successfully employed in similar conflicts by a close ally.
 - Requires minimal levels of sustainment.
 - The Service reps find that its overall costs are affordable.
 - Thus, its probability of transition is set at the highest level -0.9.
- Discount Factor addressed by a JUON → assigned highest DF of 0.99. Can be deployed in the next quarter (*t* = 1).

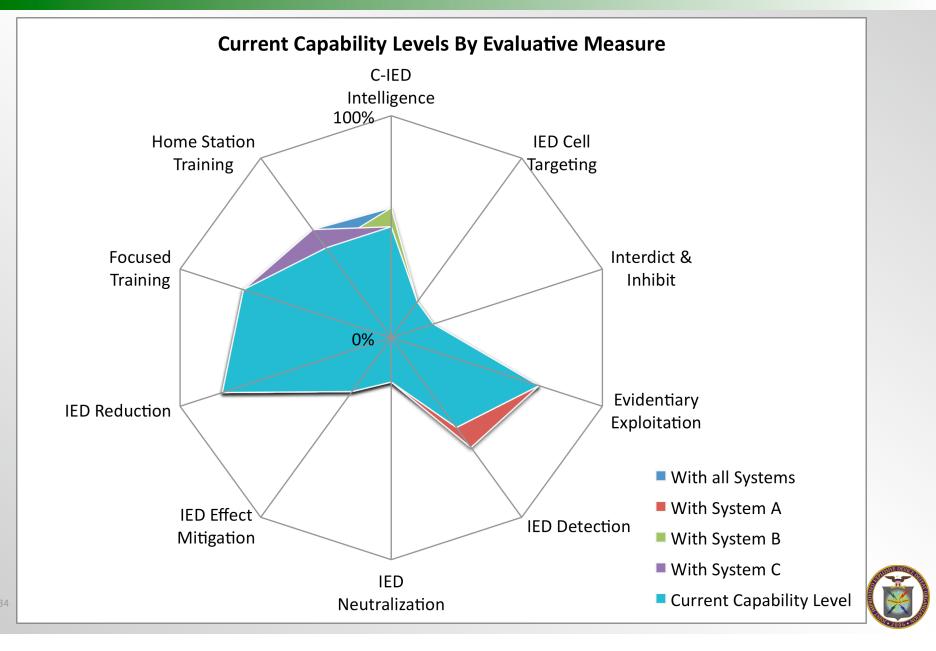
Intelligence Analyst Software B

- Potential Counter-IED Value evidence
 - Based on preliminary tests, will significantly increase the productivity of a large portion of the workforce.
 - − In terms of QQR \rightarrow 33.3% improvement.
- Probability of transition factors
 - Very expensive to buy and sustain.
 - Immature many kinks and bugs.
 - PB4D has many concerns so probability of transition is set at 0.7.
- Discount Factor
 - No JUON \rightarrow assigned DF of 0.9.
 - Earliest it can begin employment is 9 months (t = 3).

Training System C

- Potential Counter-IED Value evidence
 - 10% improvement in home station throughput.
 - Radically reduces the lag time to get latest TTPs from the battlefield.
 - − In terms of QQV \rightarrow 50% improvement.
- Probability of transition factors
 - Not very expensive.
 - However, major environmental factors at many potential sites.
 - PB4D has strong concerns so probability of transition is set at 0.5.
- Discount Factor
 - Addressed by training technology roadmap \rightarrow assigned DF of 0.9.
 - Earliest it can begin employment is 12 months (t = 4).

DE-PCV Results


	X _{i,m}		
Evaluative Measure	Sys A	Sys B	Sys C
C-IED Intelligence	0%	33%	0%
IED Cell Targeting	0%	0%	0%
Interdict & Inhibit	0%	0%	0%
Evidentiary Exploitation	0%	0%	0%
IED Detection	25%	0%	0%
IED Neutralization	0%	0%	0%
IED Effect Mitigation	0%	0%	0%
IED Reduction	0%	0%	0%
Focused Training	0%	0%	0%
Home Station Training	0%	0%	50%
t - Time to Deploy (qtrs)	1	3	4
DF	0.99	0.90	0.95
DF^t	0.99	0.73	0.81
P_T	0.90	0.70	0.50
Ρ _τ	DF ^t X _{i,m}		
Evaluative Measure	Sys A	Sys B	Sys C
C-IED Intelligence	0%	17%	0%
IED Cell Targeting	0%	0%	0%
Interdict & Inhibit	0%	0%	0%
Evidentiary Exploitation	0%	0%	0%
IED Detection	22%	0%	0%
IED Neutralization	0%	0%	0%
IED Effect Mitigation	0%	0%	0%
IED Reduction	0%	0%	0%
Focused Training	0%	0%	0%
Home Station Training	0%	0%	20%

$$DE - PCV(i) = \sum_{m} w_{m} v_{m} ((1 + P_{T} DF^{t} x_{m,i}) y_{m})) - \sum_{m} w_{m} v_{m} (y_{m})$$

Home Station Training Overall Value DE-PCV(i)	50% 37.2% na	50% 38.3% 3.1%	50% 38.1% 2.6%	60% 37.8% 1.8%
Focused Training	70%	70%	70%	70%
IED Reduction	80%	80%	80%	80%
IED Effect Mitigation	30%	30%	30%	30%
IED Neutralization	20%	20%	20%	20%
IED Detection	40%	49%	40%	40%
Evidentiary Exploitation	70%	70%	70%	70%
Interdict & Inhibit	20%	20%	20%	20%
IED Cell Targeting	20%	20%	20%	20%
C-IED Intelligence	50%	50%	58%	50%
Evaluative Measure	Current Capability Level	With System A	With System B	With System C

- Ground Sensor A scored highest, but in large part because its maturity, high • likelihood of transition and readiness to be deployed.
- Computing the discounted expectation reversed rank ordering of the initiatives. ٠
- Resolving issues getting the theater commander to provide a JUON for System • B, resolving environmental issues with System C – could have dramatic effects on their scores.

How would the Portfolio change with these Initiatives – using *DE-PCV*?

A good decision involves a socio-technical process*

- The conversation is only as good as the people participating
 - Model structure (terms of the conversation) and
 - Numbers (what is being said about the topics of the conversation)
- We have to design the process as well as the model
 - Right people (broad and deep knowledge of the problem)
 - Right data and information
 - Right forum (conducive to discussion and interaction)
 - Right balance of modeling and challenging the model with intuition
 - Right duration (meet needed deadlines but enable information gathering and socializing the results)
- A well executed decision analysis emphasizes insight, not just numbers

From Dr. Greg Parnell's "Portfolio Decision Analysis". Presentation to WINFORMS, 2 April 2010.

Next Steps

- DE-PCV:
 - Conduct spiral development with JIEDDO decision making bodies (CAC, J-8)
- Future Initiative Stream Simulation:
 - Confirming recent indications that arrival process may be better modeled via a "Poisson with random delay" distribution of arrivals.
- Counter-IED Portfolio Optimizer:
 - Develop approximate dynamic approximation approach (ADP) (embeds the Monte Carlo simulation)
 - Compare ADP approach to the stochastic integer programming approach

