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Abstract - A Common Operational Picture (COP) is 
intended to provide timely and accurate information, 
enabling shared situational awareness across multiple 
commands [1]. Building and sustaining a COP is at the 
center of command and control for today’s complex 
endeavors. Whether in military defense, homeland 
security, or industrial facility maintenance, the problem 
of maintaining such a representation of the current state 
of the endeavor is greatly hindered by several common 
factors, such as the distributed nature of the enterprise, 
the heterogeneity of its distributed components, and the 
lack of interoperability of its communication systems. In 
this paper, we propose a conceptual framework based on 
modeling and simulation that intends to capture the core 
elements involved in maintaining a COP across the 
components of a complex distributed and heterogeneous 
enterprise. 

Keywords: DEVS, probabilistic reasoning, situational 
awareness, discrete event simulation, Multi-Entity 
Bayesian networks, probabilistic ontologies, Common 
Operating Picture, system entity structure. 

1 Introduction 
Networked systems are becoming ubiquitous 

across a wide array of human activities, growing 
ever more complex with each passing year. 
Complexity increases not as an end in itself, but as a 
side effect of success. New capabilities are 
implemented, new technologies are added, scope is 
broadened, specialization increases, larger problems 
are tackled -- and complexity grows.  Because of 
complexity creep, success can be a mixed blessing. 
An intricate but capable system is a blessing in its 
ability to support complex user operations, but it can 
become a curse when the need arises to interoperate 
with other equally complex systems 

IT Complexity explosion is driven by faster, 
cheaper computers, networking, web middleware, 
and others. Wherever choices are possible in 
choosing platform, language, line of code, etc, 
different developers will make different choices. The 
underlying structure/behavior dependencies force 

local decisions to have global impact breaking neat 
design patterns. Further, environments impose a 
plethora of special situations and an exponentially 
growing number of parameter combinations. The 
obvious consequences are increasingly evident signs 
of complexity explosion, such as proliferation of 
incompatible variations on same themes, ubiquitous 
heterogeneity, and vertical integration (Stove 
piping). 

The response from software developers to these 
phenomena is the increasing adoption of Model-
Driven Development Methodology, in which a 
model is an abstract representation of software code, 
that is technology independent, can survive 
technology changes, can be implemented in multiple 
code instantiations, and enables reuse and 
automation. One example is the wide adoption of 
UML [2], a framework to support model driven 
development promoted by the Object Management 
Group as a standard within its Model Driven 
Architecture (MDA). UML is supported by 
increasingly powerful commercial tools, and has 
already spawned enhancements such as SysML [3], 
which provides a requirements front end and is 
incorporated in architectural frameworks such as the 
DoDAF and MoDAF. 

However, complex IT development often does 
not start from scratch, it is usually conditioned by 
idiosyncratic requirements, it is powered but not 
constrained by applicable standards, requires legacy 
system integration and rigorous testing to cope with 
complexity. Also, the methodology must scale with 
growth and evolution of system. UML/MDA can 
only partially address the issues of developing 
complex IT systems. 

Our conceptual framework addresses these 
caveats by adopting a System-of-Systems (SoS) 
approach, in which collections of disparate systems 
are federated to satisfy new requirements. Evolution 
of IT systems is often toward SoS and each 
participating system may itself be large and 



complex. In this paradigm, participant systems 
usually have become efficient at achieving their own 
specialized requirements, and often adhere to 
idiosyncratic formalisms and development 
approaches. In order to deal with this, one must first 
understand the spectrum of interoperation and 
integration to set appropriate objectives. 

More specifically, as pointed out by Pollock and 
Hodgson [4], the term interoperation is usually 
linked to situations in which participant systems 
remain autonomous and independent, are loosely 
coupled, their interaction rules are soft coded and 
encapsulated, local data vocabularies and ontologies 
for interpretation persist, share information via 
mediation, and provide asynchronous data transfer. 
Keywords are usually reusability, composability, and 
flexibility. Conversely, the term integration often 
implies in participants being assimilated into whole, 
losing autonomy and independence, tightly coupled, 
deal with interaction rules that are hard coded and 
co-dependent, have to adopt a global data vocabulary 
and ontology for interpretation, must share 
information conforming to strict standards, and 
include synchronous data transfer. Keywords in this 
case being fit-to-purpose and responsiveness. In our 
work we adopt the view in [4] that integration and 
interoperability are not polar opposites, Instead, 
there is a spectrum of interaction modes that must be 
acknowledged for any successful SoS framework. 

 A clear example of such spectrum is provided by 
the “Kill Chain” as depicted in Figure 1 below. 

  

Figure 1 – The Kill Chain 
 
As can be seen in the picture, it illustrates the co-

existence of interoperation and integration modes of 
component interaction. Early activities in the chain 
are characterized by larger field of view and have 
more information-centric functions than do later 
activities. They need the loose coupling and 
flexibility of interoperation. Later activities are more 
action-centric requiring the tight coupling and 
responsiveness of integrated components. 

Another major aspect of the framework being 
proposed is its coverage of all linguistic levels of 
information exchange: syntax, semantics, and 

pragmatics. The first is concerned with common 
rules governing composition and transmitting of 
messages, so a SoS is syntactically consistent when 
its participants can mutually parse their messages. 
The second level is related to the shared 
understanding of the meaning of the messages, so in 
an semantically consistent SoS all receiving 
participants assign the same meaning as the sender 
did to the message. Finally, pragmatics concern is on 
how information in messages is used and embodies a 
distinct dimension of knowledge that is crucial in 
ensuring interoperable systems. In this case, a SoS 
entity interoperates at this level when any given 
receiver participant re-acts to the message in a 
manner that the sender intends (assuming non-
hostility in the collaboration).  
The shift from the syntactic to the semantic to the 
pragmatic level of interoperability brings a shift from 
“Which format?” to “What is going on?” to “How 
can/should I respond?” Each level presupposes and 
requires the levels below it. At the syntactic level, 
the systems are able to interchange data; at the 
semantic level, they attach the same meaning to the 
data being interchanged; the pragmatic level, 
additional context or information is exchanged to 
enable appropriate action to be taken. 

The SoS framework being presented in this work 
encompasses the notion of a spectrum of 
integration/interoperability modes, as well as all the 
linguistic levels of component interaction, and 
pragmatic frames.  

This paper is structured as follows. Section 2 
presents the main technologies behind our 
framework, while Section 3 explains our approach to 
merge them in a consistent fashion. In Section 4 we 
illustrate the SoS framework usage via a sample use 
case from the maritime domain. We present our 
conclusions in Section 4. 

 
2 Background 
There is no established scientific theory of, and no 
general-purpose, theory-based methodology for 
high-level information fusion. Therefore, our vision 
on how to enable high-level fusion to support the 
establishment of a COP relies on a multi-disciplinary 
approach. The component technologies underlying 
our approach are described below 

2.1 DEVS 
Discrete Event Systems Specification (DEVS) is 

the basis for our formal framework for modeling and 
simulation. It is a mathematical formalism for 



specifying and composing components into 
systems.that started from the work by Zeigler in 
1976 [5]. DEVS is used to describe components 
across a spectrum that ranges from mathematical 
expressions and mathematical approximations to 
discrete approximations and discrete interpolation, 
with the discrete aspects of the DEVS spectrum 
executable on a digital computer.  The descriptive 
range allows DEVS to cope with the specification of 
components across several levels. It exploits the 
separation between model, experimental frame and 
simulator and thus offers a standard for distributed 
simulation to support interoperability, composability, 
and reuse. DEVS also supports automated, integrated 
complex systems development and testing, providing 
an infrastructure for rigorous simulation-based Net-
Centric test agent capability.  

A major concept in modeling with the DEVS 
formalism is that of a system entity structure (SES, 
[6]). It is a structural knowledge representation 
scheme that systematically organizes a family of 
possible structures of a system. Such a family 
characterizes decomposition, coupling, and 
taxonomic relationships among entities [5, page 
482]. As we explain later in Sections 3 and 4, in our 
SoS framework the interrelationship model family is 
comprised of a set of SES (i.e., a SES base) and a 
library of models (i.e., a model base) that capture the 
many possible structural relationships among the 
entities considered in the system. This separation 
between model and structure not only reduces the 
complexity of the system, as mentioned in [5], but 
also facilitates composeability and modularity in our 
SoS framework. 

 
2.2 Multi-Entity Bayesian Networks 

Multi-entity Bayesian Networks (MEBN) [7] is a 
probabilistic logic with first-order expressive power.  
MEBN was developed to meet the representational 
and computational challenges inherent in higher-
level multi-source fusion and situation awareness. 
Specifically, MEBN can represent degrees of 
plausibility for any hypothesis that can be expressed 
in first-order logic. Its basis in directed graphical 
models gives it a natural representation for cause and 
effect relationships. Its built-in capability for 
context-specific independence provides a natural 
way to represent contextual factors important for 
hypothesis management, such as conditions under 
which a hypothesis can be pruned because it has 
little or no impact on conclusions of interest. MEBN 
also supports a natural representation for essential 

categories of uncertainty for general situation 
awareness, such as uncertainty about entity existence 
(i.e., is a report a false alarm); uncertainty about the 
type of entity; and uncertainty about functional 
relationships (e.g., which entity gave rise to a 
report).  Its basis in Bayesian theory provides a 
natural theoretical framework for learning with 
experience. Its graphical representation supports an 
intuitive interface for specifying probabilistic 
ontologies. Finally, its modular representation 
formalism supports adaptability, by allowing 
changes to be made to parts of an ontology without 
affecting other parts or other ontologies, and 
composability, by allowing problem-specific models 
to be constructed “on the fly,” drawing only from 
those resources needed for the specific problem.  

MEBN represents the world as made up of 
entities that have attributes and are related to other 
entities. Knowledge about the attributes of entities 
and their relationships to each other is represented as 
a collection of MEBN fragments (MFrags) organized 
into MEBN Theories (MTheories). An MFrag 
represents a conditional probability distribution of 
the instances of its resident random variables (RVs) 
given the values of instances of their parents in the 
fragment graphs and given the context constraints. 
RVs are graphically represented in an MFrag either 
as resident nodes, which have distributions defined 
in their home fragment, or as input nodes, which 
have distributions defined elsewhere. Context nodes 
are the third type of MFrag nodes, and represent 
conditions assumed for definition of the local 
distributions. Figure 2 depicts the generic structure 
of an MFrag.  

 

Figure 2 – The basic components of an MFrag 

Typically, MFrags are small, because their main 
purpose is to model “small pieces” of domain 
knowledge that can be reused in any context that 
matches the context nodes. This is a very important 
feature of the logic for modeling complex situations 
— the knowledge representation version of the 



“divide and conquer” paradigm for decision-making. 
Decomposition is accomplished by modeling a 
complex situation as a collection of small MFrags, 
each representing some specific element of a more 
complex situation. The additional advantage of 
MEBN modeling is the ability to reuse these “small 
pieces” of knowledge, combining them in many 
different ways in different scenarios. A coherent 
collection of MFrags is called an MTheory. An 
MTheory represents a joint probability distribution 
for an unbounded, possibly infinite number of 
instances of its random variables. This joint 
distribution is specified implicitly through the local 
and default distributions within each MFrag, together 
with the conditional independence relationships 
implied by the fragment graphs. 

 
2.3 Probabilistic Ontologies 

Ontologies provide the “semantic glue” to enable 
knowledge sharing among distinct systems 
cooperating in data rich domains such as Predictive 
Analysis.  An ontology specifies a controlled 
vocabulary for representing entities and relationships 
characterizing a domain. Ontologies facilitate 
interoperability by standardizing terminology, allow 
automated tools to use the stored data in a context-
aware fashion, enable intelligent software agents to 
perform better knowledge management, and provide 
other benefits of formalized semantics. However, 
effective higher-level knowledge fusion requires 
reasoning under uncertainty, and traditional ontology 
formalisms provide no principled, standardized 
means to represent uncertainty. Interest is growing in 
combining semantic technology with probabilistic 
reasoning (e.g., [8-11]). Probabilistic ontologies 
provide a principled, structured, sharable formalism 
for describing knowledge about a domain and the 
associated uncertainty and could serve as a formal 
basis for representing and propagating fusion results 
in a distributed system.   

The PR-OWL probabilistic ontology language 
[12-13] is founded in MEBN logic and has the 
expressive power to represent any first-order 
Bayesian theory. PR-OWL provides the 
representation power required for information fusion 
and prediction services in net-centric environments.  
PR-OWL ontologies interoperate with the non-
probabilistic part of ontologies written in the World 
Wide Web Consortium’s standard ontology language 
OWL, thus facilitating interoperability with other 
semantically aware systems. In this proposed 
research, PR-OWL is used to design a distributed 

high-level fusion framework that performs 
approximate coherent Bayesian reasoning on 
problems of greater complexity than previously 
possible.  UnBBayes-MEBN [14, 15] is an open 
source, java-based graphical editor for PR-OWL  
ontologies being developed in conjunction with the 
University of Brasilia. Figure 3 shows the current 
UnBBayes-MEBN graphical interface for 
developing MTheories displaying an MFrag of a 
Maritime Operations MTheory built for the 
PROGNOS project [16]. 

 

Figure 3. Snapshot of a graphical PR-OWL plugin. 

2.4 Pragmatic Frames 
Zeigler and Hammond define the idea behind 

pragmatics is that the consumer’s use of the 
information should determine the description 
mechanism, or ontology, used by the producer. Then, 
the developer of the ontology, also called data 
engineer, has the task of tuning the ontology to the 
pragmatic frame [6].  

Pragmatics is defined as the use of metadata in 
relation to metadata structure and context of 
application. In other words, pragmatics uses 
metadata to convey context and its relation to 
meaning, and pragmatic frames uses such context 
information to disambiguate meaning. The idea was 
based on Speech-Act theory [17-18] and focuses on 
elucidating the intent of the semantics constrained by 
a given context. For example, suppose that I say: “I 
see the plane.” There is no context here to determine 
whether the word “plane” refers to a flat space 
defined by at least 3 points, an airplane, or a wood 
working tool, which are all valid semantic values for 
the word “plane.” It does not make sense to examine, 
in detail, the low level semantics of attributes of the 
word “plane” when an examination of the use of the 
plane will obviate further examination of the details. 

Pragmatic frames are a means to convey 
Pragmatics through an ontological framework. 



Basically, they are used to delineate a data 
engineer’s domain of interest and relate the ontology 
as being adequate or not to this domain. That is, an 
ontology supports (or is applicable to) a pragmatic 
frame if the world states (or state changes) that it can 
describe include those that are needed by the frame. 
Further, an ontology is minimal for a frame if it 
supports only that frame, not a larger one, and two 
ontologies are pragmatically equivalent in a 
pragmatic frame if there is a one-to-one 
correspondence of their world state descriptions such 
that corresponding descriptions are used in the same 
manner within the pragmatic frame of interest. 

Pragmatic equivalence is an important concept. 
Even though world state descriptions generated by 
the ontologies may differ, the manner in which they 
are processed downstream leads to the same results. 
For example, messages sent within one ontology 
might not differ from those of a second except in 
numerical precision. Consider corresponding number 
strings that are the same only up to a given number 
of significant digits. Pragmatic equivalence holds if 
both strings are treated equally by downstream 
processors. We say that this difference is absorbed 
within, or modulo, the pragmatic frame. Of course, 
another frame may treat these strings differently, 
leading to pragmatic inequivalence in this frame. 

Finally, pragmatic frames can address both static 
and dynamic situations. Static pragmatic frames 
focus on the comparisons to determine the degree of 
similarity of two frames, subtrees, or trees. Dynamic 
pragmatics refers to the change in state of the 
pragmatic frame due to a continuously occurring 
change of context, a discrete-time context change, or 
a discrete event. 
 

3 The COP Framework 
3.1 Basic Structure 

The framework recognizes the following: 
• There is a centralized capability, which we call 

the global concentrator, for gathering information 
from distributed components to create a COP, 
although it does not necessarily support a strict 
top down control hierarchy. 

• The global concentrator maintains the COP as a 
state of a model of the enterprise, where this 
model is necessarily an abstraction that facilitates 
responding to questions of interest to its current 
endeavor. 

• The global concentrator’s model is capable of 
projecting its state into the future in support of 

evaluation of plans, interventions, actions, 
depending on the nature of the endeavor proposed 
to be undertaken. 

• The distributed components have direct sensor-
based awareness of their local situations and, 
similar to the global center, maintain this picture 
as the state of a model 

• Local models are characterized by more detailed 
representations of their (limited) environments 
then the those global model, with its greater 
scope, can; such models are also more oriented to 
addressing questions of local interest 
This framework sets up a foundation for 

considering problems such as the following: 
1. How can global and local models be synchronized 

to maintain consistent states despite their 
differences in scope and purpose? 

2. How can global and local models be projected 
forward from their current states in a manner that 
does the best prediction possible while qualifying 
such predictions with meaningful uncertainty 
caveats? 
These problems are addressed in this paper as a 

basis for consideration of many others that arise in 
the framework. To address the first question, we call 
upon modeling and simulation concepts for family of 
model approximations and pragmatic frame concepts 
for consumer-based information targeting. For the 
second question, we propose multi-entity Bayesian 
nets (MEBN) and probabilistic ontologies (PR-
OWL) as an effective means for providing state 
prediction within the confines of the model and 
pragmatic frame structures set up in answer to 
question 1. This approach is depicted in Figure 4 

 
Figure 4 Overview of the COP framework. 

As shown in the picture, the architecture is built 
around the core integrated family of approximation 



models and the Bayesian inference on the model 
future states (i.e. predictive analysis). Data from 
diverse sensors, intelligence reports and other 
information sources is continuously collected to 
inform (cross-calibrate) the models. In the global 
concentrator, the interdependency model family is 
based on domain specific SESs that convey the 
parameter interrelationships. As implied by the front 
SES, these structures can be decomposed to uncover 
deeper levels of detail, thus capturing both global-
level models as the more detailed local models. This 
architecture ensures that both the global and the local 
models are synchronized to maintain consistent 
states despite their differences in scope and purpose. 
The DEVS’ SES/pragmatic frame architecture 
expresses model and state prediction, which is 
provided by the Probabilistic reasoned. This is 
obtained via the tight semantic integration between 
the knowledge stored in the probabilistic ontologies 
and the contextual information provided by the 
pragmatic frames. In response to query, the 
probabilistic reasoned consults its POs, gathers the 
most updated knowledge from the Interdependency 
Model Family (i.e. level of detail for the knowledge 
gathering is defined via pragmatic frames), and 
performs the SSBN construction algorithm to 
respond the query. The result of this process is an 
updated COP. 

Since the architecture in the figure is domain 
agnostic (i.e. any domain can be represented via the 
POs, pragmatic frames, and SES), this model is 
general enough to accommodate diverse types of 
situations in which an updated COP is required. 

 
3.2 Integrating the Framework Technologies 

Our approach to integrating the technologies 
involves developing support for pragmatic frames in 
the PO editor and devising the necessary adaptations 
to the System Entity Structure (SES) framework 
[19], and the reasoning aspects of MEBN / PR-
OWL. 

A key aspect of our current work is the fact that 
DEVS supports Systems Entity Structure/Pragmatic 
Frame ontology. This support is depicted in figure 5. 

 
DEVS Protocol specifies the abstract simulation 

engine that correctly simulates DEVS atomic and 
coupled models. This gives rise to a general protocol 
that has specific mechanisms for: 
• declaring who takes part in the simulation 
• declaring how federates exchange information 
• executing an iterative cycle that: 

ü controls how time advances 
ü determines when federates exchange messages 
ü determines when federates do internal state 

updating 
 

 
Figure 5 DEVS support for the COP framework. 

Moreover, If the federates are DEVS compliant 
then the simulation is provably correct in the sense 
that the DEVS closure under coupling theorem 
guarantees a well-defined resulting structure and 
behavior. 

The current formulation of a pragmatic frame 
relies on the SES as an implementable semantic and 
pragmatic ontology. The axiomatic formulation of 
the SES allows expressions to be represented in a 
formal mathematical/logical language. Zeigler and 
Hammonds [6] show that formal representations 
allow translations that claim to be equivalent to be 
examined rigorously. In our research, we aim to 
extend this formulation to include support for 
probabilistic ontologies as a way of keeping the 
advantages of the current SES framework while 
incorporating the benefits of principled 
representation of uncertainty and plausible 
reasoning.  

 
4 Sample Use Case 

To provide a less abstract overview of how the 
framework explained in the previous section 
operates; we now describe a possible C2 application 
within the maritime domain. Please, refer to figure 4 
for a better visualization of the framework 
components. In this sample use case, the global 
concentrator receives information from various C2 
subsystems geographically distributed at a large area. 
Some of these systems employ moving sensors (e.g. 
radars, sonars, lidars, etc, aboard the fleet of a Navy 
Group), while others might be either fixed (e.g. 
submarine sensor networks) or temporarily available 
(e.g. deployable sonar buoys). Parameters 
characterizing the output of these sensors, as well as 
the interrelationships among them are captured via 
the model base and the system entity structure base, 



which together form the interdependency model 
family represented as decomposable triangles in 
figure 4. As an example, an SES capturing the geo-
referencing of the submarine sensor networks would 
also include structural information on the level of 
detail of these networks. That is, at a global level the 
models would be mostly interested in the output of 
each sensor network as a whole, while at a local 
level the models would be driven down in detail to 
capture output of specific sensors or subgroups of 
sensors within a given network. In this case, each 
sensor within a submarine sensor network might be 
modeled as a sub-entity, whereas the sensor network 
itself would be the complex entity formed by its 
associated individual sensors. The SES/MB 
framework captures not only the hierarchical aspects 
but also the details on how the sub-entities are 
coupled.  

The interdependency model family includes the 
various SES/MB that collectively capture all the 
relevant aspects needed to answer queries posed to 
the global concentrator. Further, the DEVS 
formalism ensures that data continuously coming 
from the various information sources attached to the 
global concentrator are used to keep the model states 
updated. We now describe how the pragmatic 
frames, POs, and probabilistic reasoner work 
together to provide consistent, timely, and reliable 
answers to the queries posted against the system. 

Pragmatic frames convey contextual information 
that is used to define the level of detail required by 
the system to answer a specific query. As an 
example, lets suppose that the system received query 
G, which requires among other things the system to 
know the number of vessels known to be within 
sector Tango. The reasoning process triggered by 
query G would then require feedback from sensors 
within area Tango at a level of detail that is global in 
nature. In this case, the SES containing the 
hierarchical structure of submarine sensor network 
CoralX would return parameters (e.g. number of 
know targets within range) that are at a level in 
which CoralX is depicted as an atomic entity, since 
this is enough to ensure a proper answer to query G. 
Conversely, a more specific query L requiring the 
system to infer acoustic patterns of potential targets 
resembling class Kilo submarines within sector 
Tango would cause the very same SES to be 
decomposed at a level of detail in which each sensor 
output is considered separately.  

Each of the queries in the above example will 
trigger the SSBN construction algorithm, which will 
verify the PO library for MFrags related to each 

query. As explained earlier, MEBN “sees” the world 
as composed by entities that have their respective 
properties represented as nodes (random variables) 
in an MFrag and their relationships as the arcs 
connecting these nodes. A PO library supporting our 
sample maritime use case would be composed by 
many POs addressing various aspects of the 
maritime domain. Some of these POs would be more 
general in nature (e.g. POs on ship types, temporal 
aspects, sensor types, etc) while others would be 
much more specific (e.g. POs on submarine tactical 
warfare, sensor coupling characteristics, etc). In the 
above example, query G would likely trigger 
MFrags in the first group, while query L would 
resort to task specific POs (e.g. POs with MFrags 
depicting sensor deceiving tactics employed by 
enemy Kilo submarines).  

The combination of POs and Pragmatic frames 
enable the global concentrator to focus on the right 
knowledge to be retrieved at the level of detail that is 
just enough to properly answer each query. In both 
queries, the pragmatic frames would select the 
proper SES configuration to address each query. The 
entity resolution of the SES would then define what 
specific subset of the PO library should be made 
available to the probabilistic reasoner. In query G, 
these would be mostly aggregated, high-level entities 
that would then drive the SSBN construction. The 
more detailed query L would likely result in an 
SES/MB output with a much a higher resolution, but 
also resulting in a greater pruning of these structures 
since more specific questions require a smaller 
subset of the higher-granularity entities of interest to 
the query. This in turn would drive the probabilistic 
reasoner to look after a more specific subset of POs 
conveying probabilistic relationships among entities 
at a much higher granularity level. 

 
5 Conclusions 
The combination of pragmatic frames to convey 
context and define the entity granularity of the 
models and structures captured in the 
interdependency model family, of POs to convey the 
semantics and probabilistic relationships within 
distinct domains at different levels of specificity 
enables our framework to address many of the issues 
that plague complex SoS architectures. For instance, 
the modularity of the scheme its flexibility to adapt 
to the many possible queries posed against SoS 
architectures ensure that the whole Integration-
Interoperation spectrum is addressed. That is, there is 
no need for establishing a hard coded trade-off 



between reusability, composability, and flexibility 
(i.e. for interoperable, loosely connected systems) 
and the fit-to-purpose and responsiveness required 
for integrated systems, since the SoS framework can 
respond to requests at various levels of granularity 
without compromising consistency (e.g. by lack of 
detailed enough parameters) and performance (e.g. 
by querying over a large knowledge base to support 
high-granularity inferences). This adaptability to the 
many possible levels of granularity required at 
different “positions” in the interoperability-
integration spectrum is made possible by two major 
aspects of our work. The first is that our SoS 
framework addresses all linguistic levels of 
component interaction, ensuring not only syntax and 
semantics (i.e. as current state-of-art is headed) but 
also the pragmatics embedded in each query. The 
second is its use of a consistent first-order 
probabilistic logic for both uncertainty representation 
and reasoning, which enables situation update with 
incomplete, dissonant, and ambiguous data that can 
arrive not only from the application domain (e.g 
maritime, disaster relief, etc) but also from the 
legacy systems connected to the framework.  

Our major challenge remains to consistently 
integrate the DEVS representation of multi-entity to 
the one employed in MEBN/PR-OWL, as well as to 
integrate the implementations of both technologies.  
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