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Abstract 
This paper describes a reference implementation of policy 
enforcement and decision points designed to support source 
selection and evaluation for a fine-grained, centralized Policy-
Based Access Control (PBAC) management process. This 
process yields executable policies to govern access to diverse, 
cloud-based Department of Defense (DoD) resources..  
The first part of this paper describes the reference implementa-
tion as delivered in December 2010, which is based on Sun’s 
XACML interpreter. The second part describes a subsequent 
implementation that features direct compilation of XACML to 
Java. The compiled implementation generates Java classes that 
are considerably easier to read, understand, and debug than 
XACML and that runs many times faster than the interpreted 
implementation.  

Background 
The Department of Defense is undergoing a transformation in 
information management to meet new operational require-
ments such as1: 
• Faster mission tempo with users of diverse citizenship, or-

ganizational affiliation, operational roles, privacy needs, 
and security clearances. Seamless operation across sover-
eign boundaries while protecting sovereign assets. 

• Unanticipated users; i.e. users with verifiable certificates 
but without entries in DoD attribute stores. For example, 
members of allied forces. 

• Dynamically defined privileges. Risk-adaptive capabilities. 
Fine-grained authorization. Appropriate balance between 
need to know and need to share. 

These requirements occur in the context of other trends such 
as cloud-based deployment and centralized access control. A 
policy management process generates eXtensible Access Con-
trol Markup Language (XACML) policies from formal policy 
documents. XACML is an Oasis standard for expressing ac-
cess control policy. The execution engine (PDS) executes the 
XACML policies to determine who can access which re-
sources. The management process harmonizes the often-
conflicting policies of the diverse domains that may have an 
interest in which users can access which resources. The man-
agement process and execution engine work together to pro-
vide Policy Based Access Control (PBAC) in which access is 
defined and enforced centrally according to formal govern-

ment policy, not by the local administrators of each applica-
tion as today.  
This paper presents early results of an effort to provide an 
open source reference implementation that our customer can 
use to explore policy management and enforcement2. The pa-
per is in two parts. The first describes how the reference im-
plementation addresses the requirement that it be open source 
and hosted on forge.mil. The second describes compilation of 
XACML to Java as an alternative to Sun’s interpreted 
XACML engine, which the reference implementation uses 
now. The generated Java code is easier to read, understand, 
and debug, and many times faster than the interpreted imple-
mentation. 
This document does not discuss security although that was a 
major part of our work. This part of the work involved choos-
ing a SOA platform that implements the required standards 
and configuring it to meet the requirements. This also doesn’t 
describe the portal Technica developed to demonstrate the 
reference implementation.  

Reference Implementation 

 
Figure 1. The PEP enforces decisions made by the PDS as 
to whether to permit or deny requests. 

Figure 1 shows the core components of the reference imple-
mentation. The Policy Enforcement Point (PEP) and Policy 
Decision Service (PDS) were developed for this project and 
delivered to forge.mil in late 2010. The figure does not show 
the resources that the PEP and PDS are guarding or the policy 



 

 

and attribute stores that they base decisions on. Nor does it 
show the infrastructure for maintaining and administering the 
attribute and policy stores. In time, these will have administra-
tion points (PAPs and PIPs) plus other tools to support the 
PBAC policy and attribute management processes. 
Guarding service provider resources is the role of the PEPs. 
These authenticate each request to ensure that the sender has 
valid credentials. If so, it sends the authenticated subject iden-
tifier, the requested URL, the requested action (get, post, etc.), 
and environmental attributes (time, date, etc.) to the PDS, 
which returns one of the four possible decisions defined by the 
XACML standard (Permit, Deny, Not Applicable, or Indeter-
minate).  
In general, there are many PEPs and service providers. The 
goal is to support them with a single, centrally administered, 
generic PDS (replicated as required) that makes access control 
decisions for diverse security domains. The policy manage-
ment process supplies the algorithms the PDS uses to make 
decisions as XACML files. The XACML engine bases its de-
cisions on attribute values that the PDS supplies as a context 
record whose format is defined by the XACML standard.  
The XACML standard defines the context format but not the 
attribute names that it contains. PEPs might send the validated 
subject ID, the resource URL, and the requested action, leav-
ing the PDS to retrieve other needed attributes. Or they might 
include other attributes, leaving the PDS to map those pro-
vided to those the policy needs. And the standard does not 
specify the attributes a policy uses, while privacy and other 
concerns prevent simplistic “solutions” such as sending every-
thing “just in case”. Finally, diverse domains are often unable 
to agree on a uniform set of attributes to base their policies on.  

 
Figure 2. The PDS uses a three-step process for each deci-
sion. Each step is specified by entries in the Domains.xml 
configuration file. This is automatically reloaded when it 
changes. 

These observations suggest that the PDS needs a way for each 
domain to specify how to build the context record from the 
available attributes. This is specified by a Domains.xml file 
which specifies an XQUERY script. The script specifies the 
attribute stores each domain trusts, retrieves attribute values, 

and builds the context record1 before sending the result to the 
XACML engine for execution. The three-step process is 
shown in Figure 2. 
The PDS provides open source implementations of the three 
standards in the middle row. The PDS loads the Domains.xml 
file from the class path at initialization time and reloads it 
when this file, or the files it references, changes. Domains.xml 
contains a list of entries, one for each of the domains that the 
PDS manages plus a default entry that handles requests that 
are not matched by the other entries. Each entry specifies the 
three elements in the middle row. The Domains.xml file is 
owned and managed by the PDS owner while the XQUERY 
and XACML files it references are owned and managed by the 
security domains.  
The PDS determines the domain that holds the requested re-
source by applying each entry’s XPATH statement to the re-
quest. It is an error if more than one domain matches and a 
default entry is supported for any requests that are not 
matched. The matching XQUERY script then transforms the 
request to form the XACML context. This generally involves 
retrieving attribute values via Java extension functions devel-
oped for this project.  
The PDS loads and compiles the XQUERY script and 
XACML policies when they change so that their load and 
compile times do not affect each request. Attribute store con-
nections are established at this time and cached for reuse. 
The need to harmonize conflicting policies across diverse se-
curity domains is what distinguishes PBAC from ordinary 
access control systems. Diversity implies a need to draw at-
tributes from heterogeneous attribute stores and to harmonize 
conflicting policies. How and when this harmonization occurs 
is still being decided. One plausible outcome is that policies 
are developed, tested, harmonized, certified, and signed en-
tirely inside the policy management process, and the online 
PDS simply reports them as faults in the management process. 

Compiling XACML to Java Source 
The usual reason for replacing an interpreter with a compiler 
is performance, but this was not true in this case. The compiler 
arose from concerns over XACML’s verboseness and com-
plexity, and concern about how individuals engaged in the 
policy management process would build confidence that com-
plex policies behave as they expect.  
The goal was also not to replace XACML with Java. DoD 
chose XACML as its policy interchange language. The goal 
was to help individuals understand XACML within a complex 
policy management process. A bridge from XACML to Java 
allows individual participants to use Java IDEs to support 
change notification and management, development, testing, 

                                                                            

1 This description reflects our understanding of the standard while 
developing the reference implementation. Subsequent work on the 
compiler revealed that XACML allows implementations to retrieve 
“implicit” values directly from attribute stores. These are values that 
are referenced in a policy but not defined in the context record.  



 

 

deconfliction, and certification. Java is to XACML as machine 
language is to C, a machine-oriented representation that in this 
case is easier to comprehend than the original XACML. 
For example, the XACML standard3 provides an example pol-
icy, “Only allow logins between 9am and 5pm”. This one line 
of text expands into a whole page of XACML text. Our first 
thought was to use a more approachable language such as At-
tempto Controlled English (ACE), but this was unable to sup-
port the deeply nested conditionals2 that dominate the rules in 
Figure 3. 

 
Figure 3. Java code generated by the XACML compiler 
for one of the three reference implementation test cases. 

Figure 3 shows the Java source that the compiler produces for 
one of four rules of the reference implementation test case. 
Notice the deeply nested and/or conditions. Space does not 
allow direct comparison (the XACML is 12 pages long), but 
the generated code is considerably more concise and readable.  
The compiler was developed to this stage in about a month. 
Rapid progress was possible because XACML’s policy sche-
ma could be converted into a serviceable expression tree by 
JAX-P3. Emitting the Java source then becomes a matter of 
walking this tree, emitting code at each step to call the appro-
priate function from the library defined in the XACML stan-
dard.  
The compiler emits a Java class for each XACML Policy plus 
internal classes for each Rule. PolicySets are handled analo-
gously, with internal classes for each Policy plus Rules within 

                                                                            
2 ACE does allow commas to be used to invert the precedence of 
and-or expressions. This helps with correctness but not with the 
readability of long nested expressions. 
3 Java Architecture for XML Binding (JAX-B) compiles XML 
schema into Java classes. It is based on Java Architecture for XML 
Parsing (JAX-P) for XML parsing. The compiler uses JAX-P for 
context records so that the DOM tree will be available to XPATH 
expressions. Otherwise, the compiler uses JAX-B types for its 
expression tree. Mappings from JAX-B to Java expressions is held in 
a spreadsheet that can be easily extended to support other languages. 
For example, the Attempto Controlled English experiment used 
another column in this table, since deleted. 

these. The policy class constructors are receive the context 
record in the form of a DOM tree and immediately use it to 
populate subject, resource, action and environment variables 
as instances of the appropriate XACML library Bag types. The 
tree is also retained in an instance variable to support any 
XPATH functions that the policy might use.  
Figure 4 is an example of the code that the compiler emits to 
support the policy and policy set constructor methods. The 
policy constructor receives the context as a DOM tree pro-
duced by JAX-P. The constructor initializes policy instance 
methods by constructing instances of the generated classes 
shown in the figure. Decisions are rendered by calling the in-
stance’s evaluateQuery method. The compiler generates this 
method to call the combining algorithm specified in the 
XACML source. Policies inherit combining algorithm defini-
tions to minimize the size of the generated code. The combin-
ing algorithms invoke a PolicyTarget method in each Policy 
class and RuleTarget and RuleCondition methods in each in-
ternal Rule class. The compiler generates these methods from 
the XACML source. These methods return booleans to repre-
sent Permit and Deny or throw runtime exceptions to represent 
Indeterminate and NotApplicable responses. The combining 
algorithms catch these exceptions to support the four XACML 
decision types.  

 
Figure 4. Representative classes that show how attributes 
from the request are represented as Bag types from the 
XACML library. 

XACML interpreters are black boxes. They are loaded with a 
policy, passed a request, and return a decision with no expla-
nation of how that response was derived. Finding policy errors 
is hard when the only options are reading the logs and step-
ping through an interpreter’s internal logic with a debugger. 
Compiled Java, by contrast, is easily handled by Java debug-
gers. The user is then working directly with the policy itself, 
not the internal workings of an interpreter. Breakpoints can 
easily stop execution and values inspected at any point.  
Another month and a half was then spent building an XACML 
run-time library. This library contains approximately 20 



 

 

XACML attribute types plus Bag types for each. The compiler 
and library were then tested for compliance with the Oasis 
Conformance Test Suite. This suite consists of 400 triplets, 
each consisting of a sample request, a policy or policy set, and 
the expected response. The compiler and library currently 
passes all but 10 of the 400 tests. The outstanding issues con-
cern features that are not clearly defined in the standard or 
where the tests seem to diverge from the standard. 

Compiled XACML Performance 
Performance was never a goal of this project. But to get some 
indication of performance for this paper, the compiled and 
interpreted implementations were packaged as a pair of offline 
applications that could be compared side by side. Each appli-
cation accepts a list of request, policy, and expected response 
triplets and produces a spreadsheet of computed responses and 
execution times as shown in Figure 5. Since expected and ob-
served responses are the same in all cases, these columns were 
omitted. 

 
Figure 5. Interpreted vs. Compiled run times for one of the 
three policies from the reference implementation test 
cases. 

Test files are from the reference implementation test suite. 
This models three security domains; a carrier fleet and a pair 
of strike forces within it. Each domain has access control poli-
cies, but only those for the fleet are shown in Figure 5. The 
columns show the time in milliseconds to process requests for 
three resources (Home Page, Duty Roster and Plans) by sub-
jects with various roles in the three domains plus one (“bo-
gus”) that is not in any domain. Times for Sun’s interpreter are 
highlighted in blue and the compiled implementation in green. 
The Req, Rsp, and Pol columns are time in milliseconds to 
parse each request (Req) and response (Rsp) and to instantiate 
a policy (Pol) for that request. The Run column shows the 

time to execute the policy’s authzDecisionQuery method. The 
randomness results from the garbage collector intervening 
unpredictably. To minimize the randomness, each decision 
was recomputed 100 times and the average time reported in 
the Run column. 
The interpreted and compiled runners both use JAX-P to load 
responses and JAX-B to load requests, so these columns 
should be the same. The Pol and Run columns are the times to 
instantiate a policy (Pol) for that request and then invoke it to 
render a decision (Run). The P+R column is the ratio of inter-
preted to compiled Pol+Run times. The average of this col-
umn, at the bottom, shows that the compiled implementation is 
5.8 times faster. The Run column is the ratio of interpreted to 
compile Run times. It shows more radical differences, with the 
compiled implementation averaging 409.5 times faster.  
These results are for an artificial offline environment with 
several differences from the online PDS environment. For 
example, the offline environment does not use XPATH and 
XQUERY stages. More fundamentally, the offline runners 
both load a policy for each request while the online versions 
reload policies only when they change and reuses them for 
many requests. The safest conclusion that can be drawn from 
these numbers is that compiled decision time is negligible 
compared to other overheads in the SOA processing chain. 
Compilation moves any lingering concerns over XACML per-
formance away from the XACML core and out to the periph-
ery, particularly to the transmission, parsing, and security 
costs of a large secure SOA system such as this.  

Related Work 
In view of how quickly we got this far, it is surprising that 
direct compilation of XACML to Java seems not to have been 
explored elsewhere.  
Attempto Controlled English is often mentioned456 in connec-
tion with XACML, OWL, and RuleML. However this does 
not seem to have led to working implementations. This is not 
surprising in view of Attempto’s difficulties with nested ex-
pressions.  
The MyABDAC project7 uses compilation to enforce access 
control for MySQL database records. Rather than compiling 
XACML to executable code, it generates access control lists 
(ACLs) that MySQL interprets at run time. This might lead to 
a hybrid approach in which traditional PEPs guard access to 
applications while MyABDAC provides a SQL PEP that 
guards specific fields within applications. 
The XEngine project8 is similar to our approach. It differs by 
reducing the XACML expression tree to an intermediate nu-
merical form to move string comparison overhead to compile 
time. It then converts the normalized policy to a tree data 
structure for run-time. That makes it an interpreter like Sun’s 
that transforms the XACML expression tree into one adapted 
to the machine’s needs at runtime. Our approach originated 
from the opposite goal; providing a format (Java source code) 
suited to the user’s needs.  
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