
Policy Based Access Control (PBAC)
for Diverse DoD Security Domains

Brad J. Cox, Ph.D.
Technica Corporation

brad.cox@technicacorp.com
March 2011

Abstract
This paper describes a reference implementation of policy
enforcement and decision points designed to support source
selection and evaluation for a fine-grained, centralized Policy-
Based Access Control (PBAC) management process. This
process yields executable policies to govern access to diverse,
cloud-based Department of Defense (DoD) resources..
The first part of this paper describes the reference implementa-
tion as delivered in December 2010, which is based on Sun’s
XACML interpreter. The second part describes a subsequent
implementation that features direct compilation of XACML to
Java. The compiled implementation generates Java classes that
are considerably easier to read, understand, and debug than
XACML and that runs many times faster than the interpreted
implementation.

Background
The Department of Defense is undergoing a transformation in
information management to meet new operational require-
ments such as1:
• Faster mission tempo with users of diverse citizenship, or-

ganizational affiliation, operational roles, privacy needs,
and security clearances. Seamless operation across sover-
eign boundaries while protecting sovereign assets.

• Unanticipated users; i.e. users with verifiable certificates
but without entries in DoD attribute stores. For example,
members of allied forces.

• Dynamically defined privileges. Risk-adaptive capabilities.
Fine-grained authorization. Appropriate balance between
need to know and need to share.

These requirements occur in the context of other trends such
as cloud-based deployment and centralized access control. A
policy management process generates eXtensible Access Con-
trol Markup Language (XACML) policies from formal policy
documents. XACML is an Oasis standard for expressing ac-
cess control policy. The execution engine (PDS) executes the
XACML policies to determine who can access which re-
sources. The management process harmonizes the often-
conflicting policies of the diverse domains that may have an
interest in which users can access which resources. The man-
agement process and execution engine work together to pro-
vide Policy Based Access Control (PBAC) in which access is
defined and enforced centrally according to formal govern-

ment policy, not by the local administrators of each applica-
tion as today.
This paper presents early results of an effort to provide an
open source reference implementation that our customer can
use to explore policy management and enforcement2. The pa-
per is in two parts. The first describes how the reference im-
plementation addresses the requirement that it be open source
and hosted on forge.mil. The second describes compilation of
XACML to Java as an alternative to Sun’s interpreted
XACML engine, which the reference implementation uses
now. The generated Java code is easier to read, understand,
and debug, and many times faster than the interpreted imple-
mentation.
This document does not discuss security although that was a
major part of our work. This part of the work involved choos-
ing a SOA platform that implements the required standards
and configuring it to meet the requirements. This also doesn’t
describe the portal Technica developed to demonstrate the
reference implementation.

Reference Implementation

Figure 1. The PEP enforces decisions made by the PDS as
to whether to permit or deny requests.

Figure 1 shows the core components of the reference imple-
mentation. The Policy Enforcement Point (PEP) and Policy
Decision Service (PDS) were developed for this project and
delivered to forge.mil in late 2010. The figure does not show
the resources that the PEP and PDS are guarding or the policy

and attribute stores that they base decisions on. Nor does it
show the infrastructure for maintaining and administering the
attribute and policy stores. In time, these will have administra-
tion points (PAPs and PIPs) plus other tools to support the
PBAC policy and attribute management processes.
Guarding service provider resources is the role of the PEPs.
These authenticate each request to ensure that the sender has
valid credentials. If so, it sends the authenticated subject iden-
tifier, the requested URL, the requested action (get, post, etc.),
and environmental attributes (time, date, etc.) to the PDS,
which returns one of the four possible decisions defined by the
XACML standard (Permit, Deny, Not Applicable, or Indeter-
minate).
In general, there are many PEPs and service providers. The
goal is to support them with a single, centrally administered,
generic PDS (replicated as required) that makes access control
decisions for diverse security domains. The policy manage-
ment process supplies the algorithms the PDS uses to make
decisions as XACML files. The XACML engine bases its de-
cisions on attribute values that the PDS supplies as a context
record whose format is defined by the XACML standard.
The XACML standard defines the context format but not the
attribute names that it contains. PEPs might send the validated
subject ID, the resource URL, and the requested action, leav-
ing the PDS to retrieve other needed attributes. Or they might
include other attributes, leaving the PDS to map those pro-
vided to those the policy needs. And the standard does not
specify the attributes a policy uses, while privacy and other
concerns prevent simplistic “solutions” such as sending every-
thing “just in case”. Finally, diverse domains are often unable
to agree on a uniform set of attributes to base their policies on.

Figure 2. The PDS uses a three-step process for each deci-
sion. Each step is specified by entries in the Domains.xml
configuration file. This is automatically reloaded when it
changes.

These observations suggest that the PDS needs a way for each
domain to specify how to build the context record from the
available attributes. This is specified by a Domains.xml file
which specifies an XQUERY script. The script specifies the
attribute stores each domain trusts, retrieves attribute values,

and builds the context record1 before sending the result to the
XACML engine for execution. The three-step process is
shown in Figure 2.
The PDS provides open source implementations of the three
standards in the middle row. The PDS loads the Domains.xml
file from the class path at initialization time and reloads it
when this file, or the files it references, changes. Domains.xml
contains a list of entries, one for each of the domains that the
PDS manages plus a default entry that handles requests that
are not matched by the other entries. Each entry specifies the
three elements in the middle row. The Domains.xml file is
owned and managed by the PDS owner while the XQUERY
and XACML files it references are owned and managed by the
security domains.
The PDS determines the domain that holds the requested re-
source by applying each entry’s XPATH statement to the re-
quest. It is an error if more than one domain matches and a
default entry is supported for any requests that are not
matched. The matching XQUERY script then transforms the
request to form the XACML context. This generally involves
retrieving attribute values via Java extension functions devel-
oped for this project.
The PDS loads and compiles the XQUERY script and
XACML policies when they change so that their load and
compile times do not affect each request. Attribute store con-
nections are established at this time and cached for reuse.
The need to harmonize conflicting policies across diverse se-
curity domains is what distinguishes PBAC from ordinary
access control systems. Diversity implies a need to draw at-
tributes from heterogeneous attribute stores and to harmonize
conflicting policies. How and when this harmonization occurs
is still being decided. One plausible outcome is that policies
are developed, tested, harmonized, certified, and signed en-
tirely inside the policy management process, and the online
PDS simply reports them as faults in the management process.

Compiling XACML to Java Source
The usual reason for replacing an interpreter with a compiler
is performance, but this was not true in this case. The compiler
arose from concerns over XACML’s verboseness and com-
plexity, and concern about how individuals engaged in the
policy management process would build confidence that com-
plex policies behave as they expect.
The goal was also not to replace XACML with Java. DoD
chose XACML as its policy interchange language. The goal
was to help individuals understand XACML within a complex
policy management process. A bridge from XACML to Java
allows individual participants to use Java IDEs to support
change notification and management, development, testing,

1 This description reflects our understanding of the standard while
developing the reference implementation. Subsequent work on the
compiler revealed that XACML allows implementations to retrieve
“implicit” values directly from attribute stores. These are values that
are referenced in a policy but not defined in the context record.

deconfliction, and certification. Java is to XACML as machine
language is to C, a machine-oriented representation that in this
case is easier to comprehend than the original XACML.
For example, the XACML standard3 provides an example pol-
icy, “Only allow logins between 9am and 5pm”. This one line
of text expands into a whole page of XACML text. Our first
thought was to use a more approachable language such as At-
tempto Controlled English (ACE), but this was unable to sup-
port the deeply nested conditionals2 that dominate the rules in
Figure 3.

Figure 3. Java code generated by the XACML compiler
for one of the three reference implementation test cases.

Figure 3 shows the Java source that the compiler produces for
one of four rules of the reference implementation test case.
Notice the deeply nested and/or conditions. Space does not
allow direct comparison (the XACML is 12 pages long), but
the generated code is considerably more concise and readable.
The compiler was developed to this stage in about a month.
Rapid progress was possible because XACML’s policy sche-
ma could be converted into a serviceable expression tree by
JAX-P3. Emitting the Java source then becomes a matter of
walking this tree, emitting code at each step to call the appro-
priate function from the library defined in the XACML stan-
dard.
The compiler emits a Java class for each XACML Policy plus
internal classes for each Rule. PolicySets are handled analo-
gously, with internal classes for each Policy plus Rules within

2 ACE does allow commas to be used to invert the precedence of
and-or expressions. This helps with correctness but not with the
readability of long nested expressions.
3 Java Architecture for XML Binding (JAX-B) compiles XML
schema into Java classes. It is based on Java Architecture for XML
Parsing (JAX-P) for XML parsing. The compiler uses JAX-P for
context records so that the DOM tree will be available to XPATH
expressions. Otherwise, the compiler uses JAX-B types for its
expression tree. Mappings from JAX-B to Java expressions is held in
a spreadsheet that can be easily extended to support other languages.
For example, the Attempto Controlled English experiment used
another column in this table, since deleted.

these. The policy class constructors are receive the context
record in the form of a DOM tree and immediately use it to
populate subject, resource, action and environment variables
as instances of the appropriate XACML library Bag types. The
tree is also retained in an instance variable to support any
XPATH functions that the policy might use.
Figure 4 is an example of the code that the compiler emits to
support the policy and policy set constructor methods. The
policy constructor receives the context as a DOM tree pro-
duced by JAX-P. The constructor initializes policy instance
methods by constructing instances of the generated classes
shown in the figure. Decisions are rendered by calling the in-
stance’s evaluateQuery method. The compiler generates this
method to call the combining algorithm specified in the
XACML source. Policies inherit combining algorithm defini-
tions to minimize the size of the generated code. The combin-
ing algorithms invoke a PolicyTarget method in each Policy
class and RuleTarget and RuleCondition methods in each in-
ternal Rule class. The compiler generates these methods from
the XACML source. These methods return booleans to repre-
sent Permit and Deny or throw runtime exceptions to represent
Indeterminate and NotApplicable responses. The combining
algorithms catch these exceptions to support the four XACML
decision types.

Figure 4. Representative classes that show how attributes
from the request are represented as Bag types from the
XACML library.

XACML interpreters are black boxes. They are loaded with a
policy, passed a request, and return a decision with no expla-
nation of how that response was derived. Finding policy errors
is hard when the only options are reading the logs and step-
ping through an interpreter’s internal logic with a debugger.
Compiled Java, by contrast, is easily handled by Java debug-
gers. The user is then working directly with the policy itself,
not the internal workings of an interpreter. Breakpoints can
easily stop execution and values inspected at any point.
Another month and a half was then spent building an XACML
run-time library. This library contains approximately 20

XACML attribute types plus Bag types for each. The compiler
and library were then tested for compliance with the Oasis
Conformance Test Suite. This suite consists of 400 triplets,
each consisting of a sample request, a policy or policy set, and
the expected response. The compiler and library currently
passes all but 10 of the 400 tests. The outstanding issues con-
cern features that are not clearly defined in the standard or
where the tests seem to diverge from the standard.

Compiled XACML Performance
Performance was never a goal of this project. But to get some
indication of performance for this paper, the compiled and
interpreted implementations were packaged as a pair of offline
applications that could be compared side by side. Each appli-
cation accepts a list of request, policy, and expected response
triplets and produces a spreadsheet of computed responses and
execution times as shown in Figure 5. Since expected and ob-
served responses are the same in all cases, these columns were
omitted.

Figure 5. Interpreted vs. Compiled run times for one of the
three policies from the reference implementation test
cases.

Test files are from the reference implementation test suite.
This models three security domains; a carrier fleet and a pair
of strike forces within it. Each domain has access control poli-
cies, but only those for the fleet are shown in Figure 5. The
columns show the time in milliseconds to process requests for
three resources (Home Page, Duty Roster and Plans) by sub-
jects with various roles in the three domains plus one (“bo-
gus”) that is not in any domain. Times for Sun’s interpreter are
highlighted in blue and the compiled implementation in green.
The Req, Rsp, and Pol columns are time in milliseconds to
parse each request (Req) and response (Rsp) and to instantiate
a policy (Pol) for that request. The Run column shows the

time to execute the policy’s authzDecisionQuery method. The
randomness results from the garbage collector intervening
unpredictably. To minimize the randomness, each decision
was recomputed 100 times and the average time reported in
the Run column.
The interpreted and compiled runners both use JAX-P to load
responses and JAX-B to load requests, so these columns
should be the same. The Pol and Run columns are the times to
instantiate a policy (Pol) for that request and then invoke it to
render a decision (Run). The P+R column is the ratio of inter-
preted to compiled Pol+Run times. The average of this col-
umn, at the bottom, shows that the compiled implementation is
5.8 times faster. The Run column is the ratio of interpreted to
compile Run times. It shows more radical differences, with the
compiled implementation averaging 409.5 times faster.
These results are for an artificial offline environment with
several differences from the online PDS environment. For
example, the offline environment does not use XPATH and
XQUERY stages. More fundamentally, the offline runners
both load a policy for each request while the online versions
reload policies only when they change and reuses them for
many requests. The safest conclusion that can be drawn from
these numbers is that compiled decision time is negligible
compared to other overheads in the SOA processing chain.
Compilation moves any lingering concerns over XACML per-
formance away from the XACML core and out to the periph-
ery, particularly to the transmission, parsing, and security
costs of a large secure SOA system such as this.

Related Work
In view of how quickly we got this far, it is surprising that
direct compilation of XACML to Java seems not to have been
explored elsewhere.
Attempto Controlled English is often mentioned456 in connec-
tion with XACML, OWL, and RuleML. However this does
not seem to have led to working implementations. This is not
surprising in view of Attempto’s difficulties with nested ex-
pressions.
The MyABDAC project7 uses compilation to enforce access
control for MySQL database records. Rather than compiling
XACML to executable code, it generates access control lists
(ACLs) that MySQL interprets at run time. This might lead to
a hybrid approach in which traditional PEPs guard access to
applications while MyABDAC provides a SQL PEP that
guards specific fields within applications.
The XEngine project8 is similar to our approach. It differs by
reducing the XACML expression tree to an intermediate nu-
merical form to move string comparison overhead to compile
time. It then converts the normalized policy to a tree data
structure for run-time. That makes it an interpreter like Sun’s
that transforms the XACML expression tree into one adapted
to the machine’s needs at runtime. Our approach originated
from the opposite goal; providing a format (Java source code)
suited to the user’s needs.

[5]

[1] Department of Defense Privilege Management Roadmap by The
Office of the Assistant Secretary of Defense for Networks and
Information Integration / DoD Chief Information Officer; 6 Jan-
uary 2010.

[2] IdAM Development and Sustainment Support’s PBAC Proof of
Concept (POC) Design

[3] Oasis extensible Access Control Markup Language (XACML)
Version 2.0, OASIS Standard, 1 Feb 2005

[4] Analysis of Existing Policy Languages by Christopher Alm,
HITeC / University of Hamburg, Michael Drouineaud, TZI /
University of Bremen for the German Ministry of Education and
Research (BMBF).

[5] XACML Policy Analysis Using Description Logics, VLADI-
MIR KOLOVSKI and JAMES HENDLER. Proceedings of the
15th International World Wide Web Conference (WWW 2007).

[6] NISTIR 7657; A report on the Privilege (Access) Management
Workshop, NIST/NSA Privilege Management Conference Col-
laboration Team.

[7] Enhancing Database Access Control with XACML Policy by
Sonia Jahid, Imranul Hoque, Hamed Okhravi, Carl A. Gunter
University of Illinois at Urbana-Champaign

[8] XEngine: A Fast and Scalable XACML Policy Evaluation En-
gine; Alex X. Liu, Fei Chen, JeeHyun Hwang and Tao Xie;
SIGMETRICS’08, June 2–6, 2008.

