

Efficient Management of Configurations in the
Model-Based System Development of a Common

Submarine Combat System

Steven W. Mitchell
Lockheed Martin MS2

9500 Godwin Dr.
Manassas, VA 20110 USA

Abstract1 - Efficient management of the product
configuration process is a challenge in the evolution of any
industrial scale product family. This is particularly true
with current standards-based system modeling tools, as the
standards themselves are just beginning to address this
problem in a scalable fashion.
In the case of the SWFTS common submarine combat
system, dozens of product configurations must be managed
in parallel, with many of those baselines being updated
several times a year. To handle this task a new SysML
modeling technique has been developed. It extends the
concepts of libraries with SysML Catalogs to bound the
complexity of the configuration task, improving the quality
and efficiency of the systems engineering process.
General Terms: Systems Engineering, System Evolution

Additional Key Words and Phrases: Product Family, Model
Based Systems Engineering, SysML, SysML Catalog,
Configuration Management

I. INTRODUCTION

As described greater detail in [1], the Submarine
Warfare Federated Tactical System (SWFTS) Common
Submarine Combat System (CS2) is comprised of 39
subsystems which are configured to support six distinct
submarine classes. As the term “Federated” implies [2,
60-61], these heterogeneous subsystems are developed
autonomously by various organizations, each with their
own requirements, architectures, and funding streams, and
then loosely coupled through semantically and
syntactically controlled interfaces. The subsystems
consist of a large number of software modules hosted on a
smaller number of common Commercial Of-The-Shelf
(COTS) hardware components augmented with a
substantial number of subsystem-specific – and in some
cases variant-specific – hardware components. Much of
the software is also COTS2.

Host platform variability means that the CS2 is in
reality a product family with different variants for each
class, flight, and in some cases individual submarine.
While the core components that make up a given baseline

1 Copyright Lockheed Martin 2011. All rights reserved.
2 In this usage, COTS includes Free or Open Source Software (FOSS) as
well.

release of the CS2 are common across all host platforms,
there are host-specific variants that have to be developed,
integrated, installed, supported, and then replaced with the
next version on a regular upgrade cycle.

The CS2 integration program – the SWFTS program –
handles the hardware side of the COTS management
problem with biennual baseline updates that allow each
ship-set of equipment to be state-of-the-market when it is
installed. This process is referred to by the program as
Technology Insertion (TI). These TI baseline changes
occur in even years, leading to the nomenclature TI08,
TI10, etc.

To provide incremental improvements in system
capability and to avoid COTS software obsolescence
issues, the application software running on this hardware
platform is also upgraded biennually. For historical
reasons [3] this process is called Advanced Processor
Builds (APB). The APB baseline updates occur in odd
years, leading to the nomenclature APB09, APB11, etc.
This TI/APB cycle is in reality a double-helix
collaborative spiral development life cycle [4] where the
hardware and software spirals are one year out of phase
with each other. The APB process is managed not by the
SWFTS program, but by the Program Executive Officer
(PEO) for Integrated Warfare Systems (IWS) (PEO
IWS5A), which provides the SWFTS systems engineering
products to the individual acquisition programs that
produce the subsystems that are integrated by SWFTS.

Given that there is an unavoidable coupling of the
APBnn and TImm updates, fleet-wide baselines installed
aboard ship are referred to as TImm/APBnn. The overlap
of the TI and APB update cycles leads to an annual
change in baseline installations. Thus submarines that are
upgraded in 2011 will receive TI10/APB09, while those
upgraded in 2012 will receive TI10/APB11, etc. These
annual baselines must go through the full systems
integration process to ensure that the system installed
aboard ship is operationally suitable, effective, and
interoperable.

The baseline management problem does not end when
an annual baseline and all of its variants are installed and
certified. The changes between the older, still supported
baselines and the new baseline are assessed for

applicability to SWFTS CS2 systems already in the fleet.
When those changes fix operational problems in the
deployed systems they may be rolled into incremental
updates for those previous baselines. This leads to the
ongoing evolution of up to four baseline trees.

The engineering problem of managing the evolution
of the CS2 goes beyond simply tracking bills of materials
for the various baselines. Since this system is installed on
a submarine, power, cooling, mass properties, and
physical layout are tightly constrained and must be
tailored to the idiosyncrasies of the various host
platforms. Other materials characteristics that have safety
implications for the crew under casualty conditions, such
as the presence of various hazardous materials, must be
tracked. These systems process classified information,
and so must be documented, tested, and certified to the
appropriate standards for information assurance (IA). The
CS2 has direct impacts on safety of ship and is a core part
of a weapons system: both of those things require
additional documentation, verification, and certifications.
The CS2 interfaces with larger military command,
control, communications, computers, and intelligence
(C4I) networks, which entails interoperability testing and
certification. All of the information supporting these
various certifications and accreditations must be managed
for each variant of the CS2.

 As discussed in detail in [5] and [6], the SWFTS
program is currently converting from a traditional
document-centric systems engineering process to a
model-based systems engineering (MBSE) [7] process.
The focus of this paper is the management of variation in
the Systems Modeling Language (SysML)3 system
models that support the new SWFTS MBSE process, and
efficient construction and documentation of CS2 product
family variants.

II. CONSIDERATIONS FOR MODELING VARIABILITY IN
SYSTEM CONFIGURATIONS

Efficiently representing system variation is a key issue
in applying MBSE to the systems engineering of product
families. This is important both to minimize duplicative
data that needs to be maintained and synchronized within
the system models [8] and [9], and to minimize the
conceptual complexity of the system model [10]. There is
a large body of literature on the subject of managing
variation, much of it coming from the software product
family community.

Building on Jacobson, Griss, and Jonsson’s notion
of variation [11], Webber [12] introduced the Variation
Point Model. She describes this utilizing an extension to
the Unified Modeling Language (UML) with Gomaa in

3 The current specification of the SysML is at
http://www.omg.org/spec/SysML/

[13] for variation involving inheritance, parameterization,
information hiding, and call backs. Bachmann, et al. [14]
generalize this notion to accommodate variation points
throughout both the architecture and the design, although
without providing a specific implementation in any
standard modeling language. Critically, they observe that
implementing this approach for managing variation in
realistic product families will require a very sound
methodology for configuration management.

De Oliveira, Gimenes, and Huzita [15] developed
their own design methodology utilizing variation points.
This methodology requires both an external requirements
database and UML notes embedded in diagrams to
document key aspects of product family variation, which
has the potential for creating problems in automated
model processing (such as constraint checking). It also
raises questions about model portability between tools as
different UML modeling tools treat the content of
comments quite differently.

Compliance with industry modeling standards such
as UML and SysML [16] is a critical consideration,
because SWFTS is not a program to invent new modeling
tools and languages but a program to build submarine
combat systems. Both engineering best practices and
customer direction are to minimize the likelihood of
getting locked into any particular tool or tool vendor, and
conformance to standards is the best way to avoid such
lock-in. Where the current standards are inadequate to the
task, as in variation point modeling, this means working
with the standards organizations to extend the standards,
and with multiple tool vendors to incorporate those
updated standards in their products.

A recurring theme in the software product line
variability literature is of variability as a means for
deferring design decisions until late in the implementation
process. This is a central concern of van Gurp, Bosch,
and Svahnberg [17, 18], who systematically address the
problems of identifying the most appropriate technique
for implementing a specific kind of variability in a given
software product family. This makes sense for product
family lines designed from scratch, but seems less
applicable to programs such as SWFTS where the
problem is managing variability in the context of on-
going evolution of a product family which essentially
coalesced. However, many of the heuristics identified in
[18] for the effective use of variation points are directly
applicable to the problem of managing the evolution of
the CS2.

The concept of catalogs as an organizing mechanism
is included in the draft Service Oriented Architectures
Modeling Language (SoaML) standard [19].
Unfortunately, the SoaML standard has not progressed
beyond beta status since introduction in April 2009, and
there is no clear timeline for its finalization.

Figure 1 Top-level organization of the CS2 Engineering Data Model

III. STRUCTURE OF THE CS2 ENGINEERING DATA MODEL

The high level design of the CS2 Engineering Data
Model (CS2EDM) is described in [5]. As illustrated in
Figure 1, the CS2EDM is divided into a collection of nine
smaller models. This figure depicts only the top-level
partitioning of the system model – there are additional
models at lower levels as needed to support the evolution
of the CS2. In particular, the Subsystem Models package
contains a package for each category of subsystem
(SONAR, Electronic Support Measures (ESM),
Navigation, Communications, etc.), which in turn may
eventually contain a complete subsystem model organized
like the overall CS2EDM for each alternative
implementation of that subsystem. Thus the ESM
package might contain a subsystem version of the
CS2EDM for the AN/BLQ-10 electronic surveillance
system used on the United States Navy Virginia class, one
for the Condor CS-5600 system used on the Royal
Australian Navy Collins class, etc.

The words ‘may’ and ‘might’ are used deliberately, as
some of the subsystem implementations are either COTS
or other types of Non-Developmental Items (NDI).
Commercial vendors are unlikely to provide this level of
design documentation. Further, the degree to which even
government subsystem acquisition programs embrace
MBSE will depend on multiple factors, not the least of
which is a clear demonstration of the return on investment

of MBSE vs. traditional document-centric systems
engineering by the SWFTS program.

Aside from the Subsystem Models, the CS2EDM will
be populated only with sufficient information to support
the SWFTS systems engineering process, along with
additional information to support the requirements of the
customer acquisition process. This process, the Joint
Capabilities Integration and Development System4,
requires specific architectural information presented in a
particular format. As discussed in [1], there is substantial
overlap between that architectural information and the
information used by the SWFTS systems engineering
process, so the SWFTS customer has directed the
CS2EDM be populated sufficient additional information,
particularly in the Submarine Capabilities Model, to
satisfy both programmatic needs.

Clearly, selection of a particular implementation of a
given subsystem is a key point of variability in the CS2,
but associated with that selection are model elements
scattered across the entire CS2EDM. Thus the capability
for launching Tomahawk cruise missiles from specific
submarine platforms brings with it higher echelon
network security requirements that impact the partitioning

of the combat control LAN into network enclaves in
the Network Topology model. The unique data

4 https://dap.dau.mil/aphome/jcids/Pages/Default.aspx

requirements of the Tomahawk also impact the interfaces
between various subsystems, etc. documented in the
Interface Data Model. Since the Tomahawk is a certified
weapon system, there is associated hardware and software
that impacts the Software Model and the Hardware
Model. Thus adding a single element to the Submarine
Capabilities Model can have ripple effects throughout the
CS2EDM. This ripple effect might be an argument that
the overall model organization is flawed, as it does violate
the heuristic in [18] that variations should be associated
with a minimum of variation points. However, in the
imperfect real world other organizational considerations
often trump theoretical optimality.

 The specific partitioning of the CS2EDM depicted in
Figure 1 was selected both to support the existing SWFTS
program IPT structure, which is a reflection of
organizational considerations both within the SWFTS
program and in the larger Team Submarine acquisition
community, and to facilitate the construction and
evolution of SWFTS configuration baselines. This
structure both simplifies programmatic coordination and
the configuration management problem, since each of the

sub-models is the focus of attention of only one or two
Integrated Product Teams (IPT), and reduces the effective
memory footprint of the model being used by the IPTs.

This later feature is an important if transitory practical
consideration as it enables a common office computer to
load the modeling tool and the sub-model for editing
without being bogged down by constantly paging virtual
memory to disk, with deleterious effects on engineer
productivity. The specific model size that triggers paging
will change over time as the standard configuration of
office computers and the modeling tools evolve, but given
the scope of the CS2EDM the basic consideration of
managing computer resource demands will likely persist.

While the CS2EDM is partitioned into multiple sub-
models, as demonstrated in the Tomahawk missile
example above those partitions are not independent.
Figure 2 illustrated the key relationships between the
various subordinate models. In particular, it indicates
how system configurations, a primary product of the
SWFTS systems engineering process, are built upon the
rest of the CS2EDM.

Figure 2 Interrelationships between the elements of the CS2 EMD sub-mod

Figure 3 Constructing catalogs of approved components from libraries of available components

IV. CONSTRUCTING CONFIGURATION BASELINES

Constructing those baseline system configurations is
a technically challenging task. Given the large number
of baselines that must be managed, the total number of
software and hardware components, interface
specifications, etc. that are used in one or more
baselines at any given time is quite large. For an
engineer sitting down to construct a new baseline, the
need to hunt manually through dozens of server and

switch models or tens of hundreds of versions of
interface specifications would be so laborious and
error-prone as to defeat the productivity and quality
objectives of introducing model based systems
engineering to the SWFTS program. Traditional
UML/SysML modeling tool support for variation points
is sufficient for the toy problems used in vendor
demonstrations, but totally inadequate for an industrial
problem of this magnitude.

Thus it is necessary to create some mechanism for

appropriately restricting the scope of objects available to
the engineer constructing or modifying a given baseline.
If the totality of servers, switches, displays, etc. that are
included in the CS2EDM Hardware Model are considered
as a library of candidate hardware components, what is
needed is a catalog containing only those components
which are approved for baseline use in the configuration
at hand.

It is precisely this concept of libraries and catalogs
that is currently being used by the SWFTS program to
model the CS2EDM. As shown in Figure 3, the
approved subset of servers from the list of all servers
used in any existing or planned version of the CS2 is
imported into a catalog for a specific baseline (TI10 or
TI12 in the example). Similarly, these catalogs are

populated with other hardware components approved for
those baselines. Similar catalogs are constructed for
COTS and application-specific software components, for
interface specifications related to specific capability
requirements, etc. Each catalog restricts the scope of the
configuration to those components approved for the
specific TInn/APBmm baseline.

The actual process of constructing a baseline from a
set of catalogs is shown in Figure 4. In this case a variant
configuration from the TI10/APB09 baseline is being
constructed for a specific class of submarines. The TI10
hardware catalog is open in the browser on the left side
of the screen capture, and specific servers are being
configured into processing racks that will be installed on
the submarines. It should be noted that the specific
hardware components shown in Figure 3 and Figure 4

Figure 4 Constructing a system configuration from catalogs of approved baseline components

are purely illustrative, as these specific screen captures
were generated while working out the library and catalog
modeling technique rather than during production
engineering. But the tool support shown in Figure 4 is
critical to the productivity and quality gains that are
projected for the conversion of SWFTS from a
document-based to a model-based systems engineering
process. In this case that support is currently unique to a
particular tool vendor (No Magic, Inc. with their tool
MagicDraw UML5), but that sort of user-interface
feature is likely to be imitated by other tool vendors as a
natural side-effect of competition, so its use is not
considered as creating a high risk of tool vendor lock-in.

V. FUTURE WORK AND CONCLUSIONS

The structure of the CS2EDM described in this paper
and in [1] is firm, although of course the details are likely
to evolve. The SWFTS program is currently populating
that model with all of the information required to build a
full CS2 baseline. Once the model is fully populated, the
library and catalog methodology for constraining the
construction of configurations described above will be
used to construct a full set of baseline and variant
configurations in parallel with current document-centric
systems engineering process to validate the model and the
model-based systems engineering process.

As mentioned in Section III, the scope of the current
project is limited to populating the CS2EDM with just
enough data to support SWFTS systems engineering and
the US Department of Defense Joint Capabilities
Integration and Development System (JCIDS) acquisition
process. In particular, subsystems are being treated to the
maximum extent practical as black boxes. As the
projected benefits of moving to a model-based systems
engineering process materialize, it is anticipated that at
least some of the subsystem program offices will join in
the migration to MBSE, and the scope of the CS2EDM
will expand.

As the recent SWFTS experience with variation points
shows, modeling language and tool support for this
important concept is still quite rudimentary. As more
details are worked out and additional dimensions of the
data are filled in, it is likely the CS2EDM will stretch the
bounds of the current UML and SysML language
standards, and potentially will require inventing
extensions to those languages. This will be done in
collaboration with the developers of the respective
standards so that those extensions are defined in the spirit
of the languages, and can be incorporated in future
versions of those evolving standards. Along that line the
SysML Revision Task Force is considering OMG Issue
Number 13928, which proposes adding the

5 http://www.magicdraw.com/

ElementGroup construct to the SysML standard [20].
If adopted, this will provide much of the functionality of
the SysML Catalog construct discussed above. If and
when that change occurs in the standard and is
implemented by the tool vendors, the SWFTS program
will review its use of the Catalog construct.

In addition to building the CS2EDM, an ecology of
tools is being defined and developed around the model to
make it efficient for the many IPTs that collaboratively
evolve, implement, and support the CS2 to access those
portions of the model that they need without requiring all
of those engineers to become proficient with the tools,
languages, and schemas used to build the model. Most of
those engineers are currently using various Microsoft
Office products to manage their specialized nexi of the
overall information space that will be subsumed into the
federated CS2EDM. It is anticipated that various web
services will be built around the UML/SysML model to
provide familiar interfaces to those nexi and to eliminate
the cost of climbing the learning curve that would be
necessary if every engineer supporting the CS2 were
required to become expert in a UML/SysML modeling
tool.

ACKNOWLEDGMENTS

This research was supported by NAVSEA contract
N00024-06-C-6272. The modeling techniques described
in this paper were the result of vigorous discussions with
Mr. Greg Bussiere and Mr. Shawn Murphy of the Naval
Undersea Warfare Center, with Mr. Robert Sylvia of
Sonalysts, with Mr. Daniel Brookshier of No Magic, Inc.,
and with Mr. Sanford Friedenthal, Mr. Brandon Gibson,
and Mr. Mathew Rhodes of Lockheed Martin. The useful
results are the fruits of that collaboration, while the errors
remain my own.

REFERENCES

1. Mitchell, Steven W., "Complex Product Family
Modeling for Common Submarine Combat System
MBSE," Third International Conference on Model
Based Systems Engineering, Fairfax, VA, Sept 2010.

2. Sage, Andrew and Rouse, W. B., Handbook of
Systems Engineering and Management, 2nd ed.,
Wiley 2009.

3. Jacobus, P., P. Yan, and J. Barrett. “Information
management: the Advanced Processor Build
(Tactical).” Johns Hopkins APL Technical Digest 23,
no. 4 (Jan 2002): 366-372.

4. Boehm, B., and P. Bose. “A collaborative spiral
software process model based on theory W.”
Proceedings of the Third International Conference
on Software Process, Vol. 3, 59-68 (1994).

5. Mitchell, S., "Model-Based System Development for
Managing the Evolution of a Common Submarine

Combat System.” AFCEA-GMU C4I Center
Symposium on Critical Issues in C4I, May 18 - 19,
2010,
 http://c4i.gmu.edu/events/reviews/2010/GMU-
AFCEA-Agenda-2010.php

6. Gibson, B., S. Mitchell, and D. Robinson, "Bridging
the Gap: Modeling Federated Combat Systems,"
Third International Conference on Model Based
Systems Engineering, Fairfax, VA, Sept 2010.

7. International Council on Systems Engineering
(INCOSE), Systems Engineering Vision 2020,
Technical Report INCOSE-TP-2004-004-02, Sept.
2007,
http://www.incose.org/ProductsPubs/products/sevisio
n2020.aspx

8. Callahan, Sean M. “Extended generic product
structure: an information model for representing
product families.” Journal of Computing and
Information Science in Engineering (ASME) 6 (Nov
2006): 263-275.

9. Jiao, J., and M. M. Tseng. “An information modeling
framework for product families to support mass
customization manufacturing.” CIRP Annals-
Manufacturing Technology (Elsevier) 48, no. 1 (Jul
1999): 93-98.

10. Roshandel, R., A. V. D. Hoek, M. Mikic-Rakic, and
N. Medvidovic, “Mae---a system model and
environment for managing architectural evolution.”
ACM Transactions on Software Engineering and
Methodology (TOSEM) (ACM) 13, no. 2 (Apr 2004):
240-276.

11. Jacobson, I., M. Griss, and P. Jonsson, Software
Reuse- Architecture, Process and Organization for
Business Success, ACM Press, New York, NY.

12. Webber, Diana L., “The Variation Point Model for
Software Product Lines”, PhD Dissertaion, George
Mason University, 2001.

13. Webber, Diana L., and Hassan Gomaa, “Modeling
variability in software product lines with the variation
point model”, Science of Computer Programming,
Vol. 53, No. 3, 2004.

14. Bachmann, Felix., Michael Goedicke, Julio Leite,
Robert Nord, Klaus Pohl, Balasubramaniam Ramesh,
and Alexander Vilbig, “A meta-model for
representing variability in product family
development”, Software Product-Family
Engineering, LNCS 3014, 2004, pp. 66–80.

15. de Oliveira, Edson Alves, Itana M. S. Gimenes, Elisa
Hatsue Moriya Huzita, and Jose Carlos Maldonado,
“A variability management process for software
product lines”, Proceedings of the 2005 conference of
the Centre for Advanced Studies on Collaborative
research (CASCON'05), 2005, pp. 225-241.

16. Friedenthal, Sanford et al. A Practical Guide to
SysML: The Systems Modeling Language. Morgan
Kaufmann, 2008.

17. Van Gurp, Jilles, Jan Bosch, Mikael Svahnberg, “On
the notion of variability in software product lines”,
Proceedings of the Working IEEE/IFIP Conference
on Software Architecture, 2001, pp. 45-54.

18. Svahnberg, Mikael, Jilles van Gurp, Jan Bosch, “A
taxonomy of variability realization techniques”,
Software: Practice and Experience, Vol. 35, No. 8,
pp. 705–754.

19. Object Management Group, “Service oriented
architecture Modeling Language (SoaML) -
Specification for the UML Profile and Metamodel for
Services (UPMS)” , Draft (Beta 2), Dec. 2009.

20. Friedenthal, Sandy, private communication, Oct. 21,
2010.

